• Title/Summary/Keyword: TS 퍼지 시스템

Search Result 70, Processing Time 0.02 seconds

Modular Fuzzy Inference Systems for Nonlinear System Control (비선형 시스템 제어를 위한 모듈화 피지추론 시스템)

  • 권오신
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.5
    • /
    • pp.395-399
    • /
    • 2001
  • This paper describes modular fuzzy inference systems(MFIS) with adaptive capability to extract fuzzy inference modules from observation data through the learning process. The proposed MFIS is based on the structural similarity to Tagaki-Sugeno fuzzy models and a modular neural architecture. The learning of MFIS is done by assigning new fuzzy inference modules and by updating the parameters of existing modules. The fuzzy inference modules consist of local model network and fuzzy gating network. The parameters of the MFIS are updated by the standard LMS algorithm. The performance of the MFIS is illustrated with adaptive control of a nonlinear dynamic system.

  • PDF

Optimal Fuzzy Control of Nonlinear Systems Described by Takagi-Sugeno Fuzzy Model (Takagi-Sugeno 퍼지 모델로 표현된 비선형 시스템의 최적 퍼지 제어)

  • Park, Yon-Mook;Park, Joo-Young
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2853-2855
    • /
    • 1999
  • 본 논문은 TS(Takagi-Sugeno) 퍼지 모델로 표현된 비선형 시스템의 최적 퍼지 제어에 관한 새로운 설계 방법론을 제시하며, 최적 TS 퍼지 제어기의 매개 변수들을 설정하는 문제가 선형 행렬 부등식 문제로 표현될 수 있음을 보인다.

  • PDF

Fuzzy Pulse-Width-Modulated Feedback Control: Global Intelligent Digital Redesign Approach (퍼지 펄스폭 변조 궤환 제어: 전역적 지능형 디지털 재설계 접근법)

  • Lee Ho Jae;Joo Young Hoon;Park Jin Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.92-97
    • /
    • 2005
  • This paper discusses an intelligent digital redesign technique for designing a fuzzy pulse-width-modulated (PWM) control. First when we are given a well-designed fuzzy analog control, the equivalent digital control is intelligently redesigned. Using the similar technique we intelligently redesign the fuzzy PWM control from the intelligently redesigned fuzzy digital control. A stabilizability of the intelligently redesigned PWM control is rigorously analyzed.

Output Tracking Controller Design of Discrete-Time TS Fuzzy Systems (이산시간 TS 퍼지 시스템의 추종 제어기 설계)

  • 이호재;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.191-194
    • /
    • 2000
  • In this paper, an output tracking control technique of discrete-time Takagi-Sugeno (TS) fuzzy systems is developed. The TS fuzzy system is represented as an uncertain multiple linear system. The tracking problem of TS fuzzy system is converted into the stabilization problem of a uncertain multiple linear system. A sufficient condition for asymptotic tracking is obtained in terms of linear matrix inequalities (LMI). A design example is illustrated to show the effectiveness of the proposed method.

  • PDF

Robust Tracking Control of TS Fuzzy Systems with Parametric Uncertainties (파라미터 불확실성을 포함한 TS퍼지 시스템의 강인 추종 제어)

  • 이호재;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.260-263
    • /
    • 2000
  • In this paper, a tracking control technique of Takagi-Sugeno(TS) fuzzy systems with parametric uncertainties is developed. The uncertain TS fuzzy system is represented as an uncertain multiple linear system. The tracking problem of TS fuzzy system is converted into the regulation problem of a multiple linear system. A sufficient condition for robust tracking is obtained in terms of linear matrix inequalities(LMI). A Design example is illustrated to show the effectiveness of the proposed method.

  • PDF

Multiple Model Fuzzy Prediction Systems with Adaptive Model Selection Based on Rough Sets and its Application to Time Series Forecasting (러프 집합 기반 적응 모델 선택을 갖는 다중 모델 퍼지 예측 시스템 구현과 시계열 예측 응용)

  • Bang, Young-Keun;Lee, Chul-Heui
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.25-33
    • /
    • 2009
  • Recently, the TS fuzzy models that include the linear equations in the consequent part are widely used for time series forecasting, and the prediction performance of them is somewhat dependent on the characteristics of time series such as stationariness. Thus, a new prediction method is suggested in this paper which is especially effective to nonstationary time series prediction. First, data preprocessing is introduced to extract the patterns and regularities of time series well, and then multiple model TS fuzzy predictors are constructed. Next, an appropriate model is chosen for each input data by an adaptive model selection mechanism based on rough sets, and the prediction is going. Finally, the error compensation procedure is added to improve the performance by decreasing the prediction error. Computer simulations are performed on typical cases to verify the effectiveness of the proposed method. It may be very useful for the prediction of time series with uncertainty and/or nonstationariness because it handles and reflects better the characteristics of data.

L-gained State Feedback Control for Continuous Fuzzy Systems with Time-Delay (시간 지연 연속 시간 퍼지 시스템에 대한 L-이득값 상태 궤환 제어)

  • Lee, Dong-Hwan;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.762-767
    • /
    • 2008
  • This paper introduces a $L_{\infty}$-gain state feedback fuzzy controller design for the time delay nonlinear system represented by Takagi-Sugeno(T-S) fuzzy model. First, the T-S fuzzy model is employed to represent the time delay nonlinear system. Next based on the fuzzy model, a fuzzy state feedback controller is developed to achieve $L_{\infty}$-gain performance. Finally, sufficient conditions are derived for $L_{\infty}$-gain performance. The sufficient conditions are formulated in the format of linear matrix inequalities (LMIs). The effectiveness of the proposed controller design methonology is finally demonstrated through numerical simulations.

Intelligent Fuzzy Modeling and Robust Digital fuzzy Control for Level Control in the Steam Generator of a Nuclear Power Plant (원전 증기발생기의 수위제어를 위한 지능형 퍼지 모델링 및 강인한 디지털 퍼지 제어기 설계)

  • Joo, Young-Hoon;Cho, Kwang-Lae;Kim, Joo-Won;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.311-316
    • /
    • 2002
  • Difficulties of the level control in the steam generator are increased due to their nonlinear characteristics. Futhermore, parameter uncertainties of the steam generator is related with control performance and stability. The efficiency of digital conversion in control systems is proved in many recent researches. In order to solve this problem, this paper suggests robust digital fuzzy controller design methodologies of the steam generator which have unstable parameters. Takagi-Sugeno (TS) fuzzy model is used to construct a fuzzy model which has uncertainties in the steam generator. In designing procedure, intelligent digital redesign method is used to control the nonlinear system. This digital controller keeps the performance of the analog controller. Simulation examples are included for ensuring the proposed control method.

Intelligent Digital Redesign for Dynamical Systems with Uncertainties (불확실성을 갖는 동적 시스템에 대한 지능형 디지털 재설계)

  • Cho, Kwang-Lae;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.667-672
    • /
    • 2003
  • In this paper, we propose a systematic method for intelligent digital redesign of a fuzzy-model-based controller for continuous-time nonlinear dynamical systems which may also contain uncertainties. The continuous-time uncertain TS fuzzy model is first constructed to represent the uncertain nonlinear systems. An extended parallel distributed compensation(EPDC) technique is then used to design a fuzzy-model-based controller for both stabilization and tracking. The designed continuous-time controller is then converted to an equivalent discrete-time controller by using an integrated intelligent digital redesign method. This new design technique provides a systematic and effective framework for integration of the fuzzy-model-based control theory and the advanced digital redesign technique for nonlinear dynamical systems with uncertainties. Finally, The single link flexible-joint robot arm is used as an illustrative example to show the effectiveness and the feasibility of the developed design method.

Anticontrol of Chaos for a Continuous-Time TS Fuzzy System (연속시간 TS 퍼지 시스템의 카오스화)

  • Kim, Taek-Ryong;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.115-118
    • /
    • 2004
  • In this paper, a systematic design approach based on parallel distributed compensation techniques is proposed for anticontrol of chaos in a general continuous-time Takagi-Sugeno (TS) fuzzy system. The verification of chaos in the controlled continuous-time TS fuzzy system is done by the following procedure. First, we establish an asymptotically approximate relationship between a continuous-time TS fuzzy system with time-delay and a discrete-time TS fuzzy system. Then Marotto theorem is applied. The boundedness in the controlled continuous-time TS fuzzy system is also proven via its associated discrete-time TS fuzzy system.

  • PDF