• Title/Summary/Keyword: TID(total ionizing dose)

Search Result 35, Processing Time 0.02 seconds

THE ANALYSIS ON SPACE RADIATION ENVIRONMENT AND EFFECT OF THE KOMPSAT-2 SPACECRAFT(I): TOTAL IONIZING DOSE EFFECT (아리랑 2호의 방사능 환경 및 영향에 관한 분석(I)- TOTAL IONIZING DOSE 영향 중심으로 -)

  • 백명진;김학정
    • Journal of Astronomy and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.153-162
    • /
    • 2001
  • In this paper, space radiation environment and total ionizing dose(TID) effect have been analyzed for the KOMPSAT-2 operational orbit. It has been revealed that the trapped protons are concentrated in the SAA(South Atlantic Anomaly) area and that the trapped protons and electrons, and solar protons are main factors affecting TID. It turned out that low energy Particles can be effectively blocked by aluminum shielding thickness, but high energy Particles can not be effectively blocked by increasing aluminum shielding thickness. KOMPSAT-2 total radiation dose which is accumulated continuously to spacecraft electronics has been expressed as the function of aluminum thickness. These values ran be used as the criteria for the selection of electronic parts and shielding thinkness of the KOMPSAT-2 structure or electronic box.

  • PDF

Corrective Control of Asynchronous Sequential Circuits with Faults from Total Ionizing Dose Effects in Space (총이온화선량에 의한 고장이 존재하는 비동기 순차 회로의 교정 제어)

  • Yang, Jung-Min;Kwak, Seong-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1125-1131
    • /
    • 2011
  • This paper presents a control theoretic approach to realizing fault tolerance in asynchronous sequential circuits. The considered asynchronous circuit is assumed to work in space environment and is subject to faults caused by total ionizing dose (TID) effects. In our setting, TID effects cause permanent changes in state transition characteristics of the asynchronous circuit. Under a certain condition of reachability redundancy, it is possible to design a corrective controller so that the closed-loop system can maintain the normal behavior despite occurrences of TID faults. As a case study, the proposed control scheme is applied to an asynchronous arbiter implemented in FPGA.

Simulation of Characteristics Analysis by Total Ionizing Dose Effects in Partial Isolation Buried Channel Array Transistor (부분분리 매립 채널 어레이 트랜지스터의 총 이온화 선량 영향에 따른 특성 해석 시뮬레이션)

  • Je-won Park;Myoung-Jin Lee
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.303-307
    • /
    • 2023
  • In this paper, the creation of an Electron-Hole Pair due to Total Ionizing Dose (TID) effects inside the oxide of a Buried Channel Array Transistor (BCAT) device is induced, resulting in an increase in leakage current and threshold due to an increase in hole trap charge at the oxide interface. By comparing and simulating changes in voltage with the previously proposed Partial Isolation Buried Channel Array Transistor (Pi-BCAT) structure, the characteristics in leakage current and threshold voltage changed regardless of the increased oxide area of the Pi-BCAT device, compared to the asymmetrically doped BCAT structure. It shows superiority.

Radiation Analysis of Communications and Broadcasting Satellite

  • Park, Jae-Woo;Chung, Tae-Jin;Lee, Seong-Pal;Seon, Jong-Ho;Jeong, Yun-Whang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.2
    • /
    • pp.40-45
    • /
    • 2002
  • A radiation analysis is performed for the Ka and Ku-band transponder of the Communications and Broadcasting Satellite (CBS) that is planned for launch into the geo-synchronous orbit. A particular attention is given to calculation of Total Ionizing Dose (TID) for the mission life time of 15 + 3 years. A numerical modeling of the charged particles at the geo-synchronous orbit is undertaken. The charged particles from the modeling are then transported through the mechanical structure and component housings of the transponder. A set of locations are selected for the detailed calculation of TID. The results from the present calculation show that three-dimensional modeling of the component housings as well as the mechanical structure of the spacecraft is requisite in order to acquire a reliable calculation of TID.

Development and Application of 3-Dimensional Shielding Analysis Program to Analyze Total Ionizing Dose Level depending on the Satellite Structure Model (위성구조모델에 따른 방사선 총 이온화 조사량 예측을 위한 3차원 차폐두께 분석 프로그램의 개발 및 응용)

  • Cho, Young-Jun;Lee, Chang-Ho;Lee, Choon-Woo;Hwang, Do-Soon
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.68-75
    • /
    • 2008
  • Space radiation environments depend on satellite mission orbit, period, and date, and it can be predicted by simulation. Total Ionizing Dose(TID) can be predicted by Dose-depth Curve which only inform the dose level depending on the shielding thickness. So detail effective shielding analysis considering real structure is necessary to predict part level TID. For this purpose, program is developed to calculate shielding thickness distribution by structure modeling and ray trace from certain point in the structure. Finally TID at certain point in the 3-dimensional structure can be calculated by integration of shielding distribution result and dose-depth curve data. Using this program, TID is analyzed at part level certain point by modeling of equipment box structure in the satellite.

  • PDF

Recent Advances in Radiation-Hardened Sensor Readout Integrated Circuits

  • Um, Minseong;Ro, Duckhoon;Kang, Myounggon;Chang, Ik Joon;Lee, Hyung-Min
    • Journal of Semiconductor Engineering
    • /
    • v.1 no.3
    • /
    • pp.81-87
    • /
    • 2020
  • An instrumentation amplifier (IA) and an analog-to-digital converter (ADC) are essential circuit blocks for accurate and robust sensor readout systems. This paper introduces recent advances in radiation-hardening by design (RHBD) techniques applied for the sensor readout integrated circuits (IC), e.g., the three-op-amp IA and the successive-approximation register (SAR) ADC, operating against total ionizing dose (TID) and singe event effect (SEE) in harsh radiation environments. The radiation-hardened IA utilized TID monitoring and adaptive reference control to compensate for transistor parameter variations due to radiation effects. The radiation-hardened SAR ADC adopts delay-based double-feedback flip-flops to prevent soft errors which flips the data bits. Radiation-hardened IA and ADC were verified through compact model simulation, and fabricated CMOS chips were measured in radiation facilities to confirm their radiation tolerance.

Study on the design of GEO Satellite System in Space Radiation Environment (우주방사능 환경에서 정지궤도 위성시스템 설계에 관한 고찰)

  • Hong, Sang-Pyo;Heo, Jong-Wan
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.123-128
    • /
    • 2010
  • The space radiation/total ionizing Dose(TID) and its effects, and the GEO satellite system design considerations in space radiation environment are studied in this paper using Spenvis(Space Environment Information System). The GEO satellite system in space environment is simulated by NASA AP8/AE8, JPL91 and NRL CREME models, repectively for trapped particle, solar proton and cosmic-ray. The total ionizing Dose which is accumulated continuously to spacecraft electronics has been expressed as the function of aluminum thickness. These values can be used as the criteria for the selection of electronic parts and shielding thickness of the Digital Channel Amplifier(DCAMP) structure.

HAUSAT-2 SPACE RADIATION ENVIRONMENT AND EFFECTS ANALYSIS (HAUSAT-2 우주방사능 환경과 영향 분석)

  • Jung Ji-wan;Chang Young-Keun
    • Bulletin of the Korean Space Science Society
    • /
    • 2005.04a
    • /
    • pp.143-147
    • /
    • 2005
  • This paper describes the analysis of radiation environment and effects. TID(Total ionizing Dose) and SEE(Single Event Effects) analysis are implemented. The HAUSAT-2 is a 25kg class nanosatellite which is operated at sun-synchronous orbit at an altitude 650km. Trapped proton and Electron, Solar Proton, Galactic Cosmic Ray models are considered to HAUSAT-2 radiation environment model. Total Dose-depth curve provides TID degree and components are verified by DMBP method and Sectoring analysis. SEE are analysed with Radiation Test Report. Existing Radiation Test Reports are use to SEE analysis of HAUSAT-2.

  • PDF

Test-bed of Total Ionizing Dose (TID) Test by Cosmic Rays for Metal Oxide Semiconductor Field Effect Transistor (MOSFET) (금속-산화막 반도체 전계효과 트랜지스터의 우주방사선에 의한 총이온화선량 시험을 위한 테스트 베드)

  • Sin, Gu-Hwan;Yu, Gwang-Seon;Gang, Gyeong-In;Kim, Hyeong-Myeong;Jeong, Seong-In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.84-91
    • /
    • 2006
  • Recently, all the electrical parts for satellite application are required more strong against cosmic rays, because spacecraft's life time and function are depending on the their conditions. Also, a TID effect test was undertaken with units and/or subsystems which are already assembled on the PCB in past time. However, it is very hard to know and analyze that some abnormal states are appeared after launch. Moreover, it is necessary to perform a test of TID effects based on the parts level for preparing preliminary data in cosmic rays. Therefore, this paper presents a test-bed to perform a TID effect test of Metal-Oxide Semiconductor Field Effect Transistor (MOSFET) which is a fundamental element for electronics.

Fault Diagnosis and Tolerance for Asynchronous Counters with Critical Races Caused by Total Ionizing Dose in Space (우주 방사능 누적에 의한 크리티컬 레이스가 존재하는 비동기 카운터를 위한 고장 탐지 및 극복)

  • Kwak, Seong-Woo;Yang, Jung-Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.49-55
    • /
    • 2012
  • Asynchronous counters, where the counter value is changed not by a synchronizing clock but by outer inputs, are used in various modern digital systems such as spaceborne electronics. In this paper, we propose a scheme of fault tolerance for asynchronous counters with critical races caused by total ionizing dose (TID) in space. As a typical design flaw of asynchronous digital circuits, critical races cause an asynchronous circuit to show non-deterministic behavior, i.e., the next stable state of a state transition is not a fixed value but may be any value of a state set. Using the corrective control scheme for asynchronous sequential machines, this paper provides an existence condition and design procedure for a state feedback controller that can invalidate the effect of critical races. We implement the proposed control system in VHDL code and conduct experiments to demonstrate that the proposed control system can overcome critical races.