• Title/Summary/Keyword: TEM Journal

Search Result 3,012, Processing Time 0.031 seconds

Preparation of Gold-Peptide Hybrid Nanoparticles and Its Applications in Catalytic Reduction of Methylene Blue (금-펩타이드 하이브리드 나노입자의 제조와 메틸렌 블루의 촉매 환원 응용)

  • Hur, Yun-Mi;Min, Kyoung-Ik
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.163-167
    • /
    • 2021
  • In the present work, we studied a method for the synthesis of uniform gold-peptide hierarchical superstructures using tyrosine rich peptide, Tyr-Tyr-Leu-Tyr-Tyr (YYLYY). Peptide nanoparticles self-assembled by dityrosine bonds were synthesized through the photo-crosslinking reaction of the peptide, and gold-peptide hybrid nanoparticles were synthesized using biomineralization properties of tyrosine in a green synthetic manner. The synthesized gold-peptide hybrid nanoparticles were then characterized by transmission electron microscopy, scanning electron microscopy, dynamic light scattering, UV-vis spectroscopy, scanning transmission electron microscopy-energy dispersive X-ray spectroscopy, and X-ray diffraction. Furthermore, the catalytic activity of gold-peptide hybrid nanoparticles was confirmed by the reduction reaction of methylene blue where the catalytic reaction rate constant was 13.4 × 10-3 s-1.

Synthesis of Au Nanoparticles Functionalized 1D α-MoO3 Nanobelts and Their Gas Sensing Properties

  • Wang, Liwei;Wang, Shaopeng;Fu, Hao;Wang, Yinghui;Yu, Kefu
    • Nano
    • /
    • v.13 no.10
    • /
    • pp.1850115.1-1850115.10
    • /
    • 2018
  • A novel sensor material of Au nanoparticles (NPs) functionalized 1D ${\alpha}-MoO_3$ nanobelts (NBs) was fabricated by a facile lysine-assisted approach. The obtained $Au/{\alpha}-MoO_3$ product was characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive X-ray (EDX), and X-ray photoelectron spectra (XPS). Then, in order to investigate the gas sensing performances of our samples, a comparative gas sensing study was carried out on both the ${\alpha}-MoO_3$ NBs before and after Au NPs decoration by using ethanol vapor as the molecular probe. The results turned out that, after the functionalization of Au NPs, the sensor exhibited improved gas-sensing characteristics than the pure ${\alpha}-MoO_3$, such as response and recovery time, optimal operating temperature (OT) and excellent selectivity. Take for example 200 ppm of ethanol, the response/recovery times were 34 s/43 s and 5.7 s/10.5 s, respectively, while the optimal operating temperature (OT) was lower to $200^{\circ}C$ rather than $250^{\circ}C$. Besides, the functionalized sensor showed a higher response to ethanol at $200^{\circ}C$, and response was 1.6 times higher than the pure $MoO_3$. The mechanism of such improved sensing properties was interpreted, which might be attributed to the spillover effect of Au NPs and the electronic metal-support interaction.

Green Synthesis of Multifunctional Carbon Nanodots and Their Applications as a Smart Nanothermometer and Cr(VI) Ions Sensor

  • Li, Lu;Shao, Congying;Wu, Qian;Wang, Yunjian;Liu, Mingzhu
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850147.1-1850147.14
    • /
    • 2018
  • In this work, water-soluble and blue-emitting carbon nanodots (CDs) were synthesized from apple peels for the first time via one-step hydrothermal method. The synthetic route is facile, green, economical and viable. The as-prepared CDs were characterized thoroughly by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman, Fourier transform infrared (FT-IR), X-ray photoelectron (XPS), fluorescence and UV-Vis absorption spectroscopy in terms of their morphology, surface functional groups and optical properties. The results show that these CDs possessed ultrasmall size, good dispersivity, and high tolerance to pH, ionic strength and continuous UV irradiation. Significantly, the CDs had fast and reversible response towards temperature, and the accurate linear relationship between fluorescence intensity and temperature was used to design a novel nanothermometer in a broad temperature range from 5 to $65^{\circ}C$ facilely. In addition, the fluorescence intensity of CDs was observed to be quenched immediately by Cr(VI) ions based on the inner filter effect. A low-cost Cr(VI) ions sensor was proposed employing CDs as fluorescent probe, and it displayed a wide linear range from 0.5 to $200{\mu}M$ with a detection limit of $0.73{\mu}M$. The practicability of the developed Cr(VI) sensor for real water sample assay was also validated with satisfactory recoveries.

Momentum and Contrarian Strategies and Behavior of Foreign Investors in Korean Stock Market (한국 주식시장에서의 계속 투자전략 및 반전투자전략의 성과와 외국인투자자의 투자행태)

  • Yun, Jeongsun;Yoon, Sang Geun;Hong, Chung-hun
    • International Area Studies Review
    • /
    • v.12 no.3
    • /
    • pp.195-216
    • /
    • 2008
  • It is generally accepted that the momentum strategies are effective in the short-term, and the contrarian strategies are profitable in the long run in major stock markets in the world. In Korean market, however, the contrarian is considered effective investment strategy both in the short- and long-term. We investigate whether this is true after 1999, and try to find out the reasons for this phenomena. We found that the contrarian strategies are still effective. Foreign investors showed consistent investment behavior both in Korean and abroad: they followed momentum in the short-tem, and contrarian in the longer-term. The individual investors, who are thought to be noise trader, showed different behavior. They followed contrarian strategies both in the short-and long-term. The reason that the contrarian is observed in Korean market regardless of the investment horizon is thought to be the irrtional behavior of individual investors.

Ni Nanoparticle Anchored on MWCNT as a Novel Electrochemical Sensor for Detection of Phenol

  • Wang, Yajing;Wang, Jiankang;Yao, Zhongping;Liu, Chenyu;Xie, Taiping;Deng, Qihuang;Jiang, Zhaohua
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850134.1-1850134.10
    • /
    • 2018
  • Increasing active sites and enhancing electric conductivity are critical factors to improve sensing performance toward phenol. Herein, Ni nanoparticle was successfully anchored on acidified multiwalled carbon nanotube (a-MWCNT) surface by electroless plating technique to avoid Ni nanoparticle agglomeration and guarantee high conductivity. The crystal structure, phase composition and surface morphology were characterized by XRD, SEM and TEM measurement. The as-prepared Ni/a-MWCNT nanohybrid was immobilized onto glassy carbon electrode (GCE) surface for constructing phenol sensor. The phenol sensing performance indicated that Ni/a-MWCNT/GCE exhibited an amazing detection performance with rapid response time of 4 s, a relatively wide detection range from 0.01 mM to 0.48 mM, a detection limit of $7.07{\mu}M$ and high sensitivity of $566.2{\mu}A\;mM^{-1}\;cm^{-2}$. The superior selectivity, reproducibility, stability and applicability in real sample of Ni/a-MWCNT/GCE endowed it with potential application in discharged wastewater.

Study on Synthesis of Pine Leaf Extract Intercalated Mg-Phyllosilicate Sandwich Nanoparticles and Antimicrobial Activity against Cutaneous Microorganisms (솔잎 추출물이 삽입된 마그네슘-층상규산염 샌드위치 나노입자의 합성과 피부 상재균에 대한 항균 특성에 관한 연구)

  • Kim, Seong Yeol;Choi, Yoo-Sung
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.254-259
    • /
    • 2019
  • In this study, we synthesized the pine leaf extract intercalated layered Mg-phyllosilicate nanoparticles (PLE/MgP) via one-pot synthesis. MgP was successfully synthesized with the octahedral and tetrahedral structure by XRD analysis and a gap of interlayer distance (d-spacing) between MgP sheets by the intercalation of PLE was confirmed. As a result of the investigation of antimicrobial activity against cutaneous microorganisms by the minimum inhibitory concentration (MIC) and bactericidal concentration (MBC) analyses, the antimicrobial activity of PLE/MgP was more improved than that of MgP or PLE. The prepared sandwich-structured PLE/MgP organic/inorganic hybrid materials will be useful in the field of numerous applications containing cosmetic and biomedical materials.

Effect of Hydrogen Concentration on Surface Oxidation Behavior of Alloy 600 in Simulated Primary Water of Pressurized Water Reactor (원전 1차측 수화학 환경에서 수소 농도가 Alloy 600의 표면산화 거동에 미치는 영향)

  • Yun Soo, Lim;Dong Jin, Kim;Sung Woo, Kim;Seong Sik, Hwang;Hong Pyo, Kim;Sung Hwan, Cho
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.466-475
    • /
    • 2022
  • Surface oxides and intergranular (IG) oxidation phenomena in Alloy 600 depending on hydrogen concentration were characterized to obtain clear insight into the primary water stress corrosion cracking (PWSCC) behavior upon exposure to pressurized water reactor primary water. When hydrogen concentration was between 5 and 30 cm3 H2/kg H2O, NiFe2O4 and NiO type oxides were found on the surface. NiO type oxides were found inside the oxidized grain boundary when hydrogen concentration was 5 cm3 H2/kg H2O. However, only NiFe2O4 spinel on the surface and Ni enrichment were observed when hydrogen concentration was 30 cm3 H2/kg H2O. These results indicate that the oxidation/reduction reaction of Ni in Alloy 600 depending on hydrogen concentration can considerably affect surface oxidation behavior. It appears that the formation of NiO type oxides in a Ni oxidation state and Ni enrichment in a Ni reduction (or metallic) state are common in primary water. It is believed that the above different oxidation/reduction reactions of Ni in Alloy 600 depending on hydrogen concentration can also significantly affect the resistance to PWSCC of Alloy 600.

Fabrication of diamond/W-Cu functionally graded material by microwave sintering

  • Wei, Chenlong;Cheng, Jigui;Zhang, Mei;Zhou, Rui;Wei, Bangzheng;Yu, Xinxi;Luo, Laima;Chen, Pengqi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.975-983
    • /
    • 2022
  • A four-layered W/Cu functionally graded material (FGM) (W90% + Cu10%/W80% + Cu20%/W70% + Cu30%/W60% + Cu40%, wt.% fraction) and a four-layered diamond/W-Cu FGM (W90% + Cu10%/W80% + Cu20%/W70% + Cu30%/W55% + Cu40% + diamond5%, wt.% fraction) were fabricated by microwave sintering. The thermal conductivity and thermal shock resistance of diamond/W-Cu FGM and W-Cu FGM were investigated. The morphologies of the diamond particles and different FGMs were analyzed using AFM, SEM, EDS, and TEM. The results show that a 200 nm rough tungsten coating was formed on the surface of the diamond. The density of the tungsten-coated diamond/W-Cu FGM, obtained by microwave sintering at 1200 ℃ for 30 min, was 94.66%. The thermal conductivity of the fourlayered diamond/W-Cu FGM was 220 W·m-1·K-1, which is higher than that of the four-layered W/Cu FGM (209 W m-1 K-1). This indicates that adding an appropriate amount of tungsten-coated diamond to the high Cu layer W/Cu FGM improves the thermal conductivity of the composite. The diamond/W-Cu FGM sintered at 1200 ℃ for 10 min exhibited better thermal shock resistance than diamond/W-Cu FGM sintered at 1100 ℃ for 10 min.

X-ray / gamma ray radiation shielding properties of α-Bi2O3 synthesized by low temperature solution combustion method

  • Reddy, B. Chinnappa;Manjunatha, H.C.;Vidya, Y.S.;Sridhar, K.N.;Pasha, U. Mahaboob;Seenappa, L.;Sadashivamurthy, B.;Dhananjaya, N.;Sathish, K.V.;Gupta, P.S. Damodara
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1062-1070
    • /
    • 2022
  • In the present communication, pure and stable α-Bismuth Oxide (Bi2O3) nanoparticles (NPs) were synthesized by low temperature solution combustion method using urea as a fuel and calcined at 500℃. The synthesized sample was characterized by using powder X-ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), Energy dispersive X-ray analysis (EDAX), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and UV-Visible absorption spectroscopy. The PXRD pattern confirms the formation of mono-clinic, stable and low temperature phase α-Bi2O3. The direct optical energy band gap was estimated by using Wood and Tauc's relation which was found to be 2.81 eV. The characterized sample was studied for X-ray/gamma ray shielding properties in the energy range 0.081-1.332 MeV using NaI (Tl) detector and multi channel analyzer (MCA). The measured shielding parameters agrees well with the theory, whereas, slight deviation up to 20% is observed below 356 keV. This deviation is mainly due to the influence of atomic size of the target medium. Furthermore an accurate theory is necessary to explain the interaction of X-ray/gamma ray with the NPs.The present work opens new window to use this facile, economical, efficient, low temperature method to synthesize nanomaterials for X-ray/gamma ray shielding purpose.

Toulene Removal over the Water-suspended Sn-Incorporated $TiO_2$ Photocatalyst Prepared by Solvothermal Method (Solvothermal 법에 의해 제조된 Sn-$TiO_2$ 나노 반도체 촉매 상에서의 수중 부유 톨루엔 광분해 반응)

  • Kim, Ji-Yeon;Kim, Ji-Eun;Kang, Mi-Sook
    • Clean Technology
    • /
    • v.16 no.1
    • /
    • pp.46-50
    • /
    • 2010
  • This study focuses on the removal of water-suspended toluene of a representative sick house compounds in a liquid photo-system using nanometer-sized Sn-incorporated $TiO_2$ which was synthesized by a solvothermal method. The characteristics of the synthesized Sn-$TiO_2$ were analyzed by X-ray Diffraction (XRD), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), and UV-visible spectroscopy (UV-Vis). To estimate the photocatalytic activity of Sn-$TiO_2$, the photodegradation of water-suspended toluene was performed, and the remaining concentration was determined using UV-visible spectroscopy. The water-suspended toluene photodegradation over Sn-incorporated $TiO_2$ catalyst was better than that over pure $TiO_2$ (anatase). The water-suspended toluene of 500 ppm was perfectly decomposed within 300 minutes over 0.01 mol% Sn-$TiO_2$.