DOI QR코드

DOI QR Code

Green Synthesis of Multifunctional Carbon Nanodots and Their Applications as a Smart Nanothermometer and Cr(VI) Ions Sensor

  • Li, Lu (College of Chemistry and Materials Science, Huaibei Normal University) ;
  • Shao, Congying (College of Chemistry and Materials Science, Huaibei Normal University) ;
  • Wu, Qian (College of Chemistry and Materials Science, Huaibei Normal University) ;
  • Wang, Yunjian (College of Chemistry and Materials Science, Huaibei Normal University) ;
  • Liu, Mingzhu (College of Chemistry and Materials Science, Huaibei Normal University)
  • Received : 2018.07.31
  • Accepted : 2018.11.20
  • Published : 2018.12.31

Abstract

In this work, water-soluble and blue-emitting carbon nanodots (CDs) were synthesized from apple peels for the first time via one-step hydrothermal method. The synthetic route is facile, green, economical and viable. The as-prepared CDs were characterized thoroughly by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman, Fourier transform infrared (FT-IR), X-ray photoelectron (XPS), fluorescence and UV-Vis absorption spectroscopy in terms of their morphology, surface functional groups and optical properties. The results show that these CDs possessed ultrasmall size, good dispersivity, and high tolerance to pH, ionic strength and continuous UV irradiation. Significantly, the CDs had fast and reversible response towards temperature, and the accurate linear relationship between fluorescence intensity and temperature was used to design a novel nanothermometer in a broad temperature range from 5 to $65^{\circ}C$ facilely. In addition, the fluorescence intensity of CDs was observed to be quenched immediately by Cr(VI) ions based on the inner filter effect. A low-cost Cr(VI) ions sensor was proposed employing CDs as fluorescent probe, and it displayed a wide linear range from 0.5 to $200{\mu}M$ with a detection limit of $0.73{\mu}M$. The practicability of the developed Cr(VI) sensor for real water sample assay was also validated with satisfactory recoveries.

Keywords

Acknowledgement

Supported by : Anhui Natural Science Foundation, Natural Science Foundation of Anhui Provincial Department of Education

References

  1. D. Gu, S. M. Shang, Q. Yu and J. Shen, Appl. Sur. Sci. 390, 38 (2016). https://doi.org/10.1016/j.apsusc.2016.08.012
  2. F. S. Wu, M. Q. Yang, H. Zhang, S. Z. Zhu, X. J. Zhu and K. Wang, Opt. Mater. 77, 258 (2018). https://doi.org/10.1016/j.optmat.2018.01.048
  3. X. M. Yang, Y. Zhuo, S. S. Zhu, Y. W. Luo, Y. J. Feng and Y. Dou, Biosens. Bioelectron. 60, 292 (2014). https://doi.org/10.1016/j.bios.2014.04.046
  4. C. X. Wang, K. L. Jiang, Q. Wu, J. P. Wu and C. Zhang, Chem. Eur. J. 22, 14475 (2016). https://doi.org/10.1002/chem.201602795
  5. P. J. Yang, J. H. Zhao, J. Wang, B. Y. Cao, L. Li and Z. P. Zhu, J. Mater. Chem. A 3, 136 (2014).
  6. Z. Gao, L. B. Wang, R. X. Su, R. L. Huang, W. Qi and Z. M. He ,Biosens. Bioelectron. 70, 232 (2015). https://doi.org/10.1016/j.bios.2015.03.043
  7. L. H. Shi, B. Zhao, X. F. Li, G. M. Zhang, Y. Zhang, C. Dong and S. M. Shuang, Anal. Methods 9, 2197 (2017). https://doi.org/10.1039/C7AY00163K
  8. C. X. Zhao, Y. Jiao, F. Hu and Y. L. Yang, Spectrochim. Acta Part A 190, 360 (2017).
  9. X. H. Hu, X. Q. An and L. L. Li, Mater. Sci. Eng. C 58, 730 (2016). https://doi.org/10.1016/j.msec.2015.09.066
  10. K. Jiang, S. Sun, L. Zhang, Y. Lu, A. G. Wu, C. Z. Cai and H. W. Lin, Angew. Chem. Int. Ed. 54, 5360 (2015). https://doi.org/10.1002/anie.201501193
  11. C. I. Weng, H. T. Chang, C. H. Lin, Y. W. Shen, B. Unnikrishnan, Y. J. Li and C. C. Huang, Biosens. Bioelectron. 68, 1 (2015). https://doi.org/10.1016/j.bios.2014.12.028
  12. S. N. Qu, X. Y. Wang, Q. P. Lu, X. Y. Liu and L. J. Wang, Angew. Chem. Int. Ed. 51, 12215 (2012). https://doi.org/10.1002/anie.201206791
  13. J. P. Wang, S. Sahu, S. K. Sonkar, K. N. Tackeet II, K. W. Sun, Y. M. Liu, H. Maimaiti, P. Anilkumar and Y. P. Sun, RSC Adv. 3, 15604 (2013). https://doi.org/10.1039/c3ra42302f
  14. V. Arul and M. G. Sethuraman, Opt. Mater. 78, 181 (2018). https://doi.org/10.1016/j.optmat.2018.02.029
  15. M. Han, S. J. Zhu, S. Y. Lu, Y. B. Song, T. L. Feng, S. Y. Tao, J. J. Liu and B. Yang, Nano Today 19, 201 (2018). https://doi.org/10.1016/j.nantod.2018.02.008
  16. N. Li, T. Liu, S. G. Liu, S. M. Lin, Y. Z. Fan, H. Q. Luo and N. B. Li, Sens. Actuators B, Chem. 248, 597 (2017). https://doi.org/10.1016/j.snb.2017.03.068
  17. Y. Zhuo, D. Zhong, H. Miao and X. M. Yang, RSC Adv. 5, 32669 (2015). https://doi.org/10.1039/C5RA02598B
  18. S. S. Wang, C. Y. Li, M. Qian, H. L. Jiang, W. Shi, J. Chen, U. Lächelt, E. Wagner, W. Y. Lu, Y. Wang and R. Q. Huang, Biomaterials 141, 29 (2017). https://doi.org/10.1016/j.biomaterials.2017.05.040
  19. Y. W. Bao, X. W. Hua, Y. H. Li, H. R. Jia and F. G. Wu, ACS Appl. Mater. Inter. 10, 1544 (2018). https://doi.org/10.1021/acsami.7b15332
  20. X. Guo, C. F. Wang, Z. Y. Yu, L. Chen and S. Chen, Chem. Commun. 48, 2692 (2012). https://doi.org/10.1039/c2cc17769b
  21. Z. Zeng, W. D. Zhang, D. M. Arvapalli, B. Bloom, A. Sheardy, T. Mabe, Y. Y. Liu, Z. W. Ji, H. Chevva, D. H. Waldeck and J. J. Wei, Phys. Chem. Chem. Phys. 19, 20101 (2017). https://doi.org/10.1039/C7CP02875J
  22. H. T. Li, Z. H. Kang, Y. Liu and S. T. Lee, J. Mater. Chem. 22, 24230 (2012). https://doi.org/10.1039/c2jm34690g
  23. S. N. Baker and G. A. Baker, Angew. Chem. Int. Ed. 49, 6726 (2010). https://doi.org/10.1002/anie.200906623
  24. A. L. Himaja, P. S. Karthik and S. P. Singh, Chem. Rec. 15, 595 (2015). https://doi.org/10.1002/tcr.201402090
  25. L. M. Shen and J. Liu, Talanta 156-157, 245 (2016). https://doi.org/10.1016/j.talanta.2016.05.028
  26. H. T. Shi, J. F. Wei, L. Qiang, X. Chen and X. W. Meng, J. Biomed. Nanotechnol. 10, 2677 (2014). https://doi.org/10.1166/jbn.2014.1881
  27. S. Chaudhary, S. Kumar, B. Kaur and S. K. Mehta, RSC Adv. 6, 90526 (2016). https://doi.org/10.1039/C6RA15691F
  28. Q. Xu, T. R. Kuang, Y. Liu, L. L. Cai, X. F. Peng, T. S. Sreeprasad, P. Zhao, Z. Q. Yu and N. Li, J. Mater. Chem. B 4, 7204 (2016). https://doi.org/10.1039/C6TB02131J
  29. S. L. Hu, K. Y. Niu, J. Sun, J. Yang, N. Q. Zhao and X. W. Du, J. Mater. Chem. 19, 484 (2008).
  30. J. Lu, J. X. Yang, J. Z. Wang, A. Lim, S. Wang and K. P. Loh, ACS Nano 3, 2367 (2009). https://doi.org/10.1021/nn900546b
  31. A. B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, M. Karakasside and E. P. Giannelis, Small 4, 455 (2008). https://doi.org/10.1002/smll.200700578
  32. Z. Yang, Z. H. Li, M. H. Xu, Y. J. Ma, J. Zhang, Y. J. Su, F. Gao, H. Wei and L. Y. Zhang, Nano-Micro Lett. 5, 247 (2013). https://doi.org/10.1007/BF03353756
  33. H. Zhu, X. L. Wang, Y. L. Li, Z. J. Wang, F. Yang and X. R. Yang, Chem. Commun. 34, 5118 (2009).
  34. H. T. Li, X. D. He, Y. Liu, H. Yu, Z. H. Kang and S. T. Lee, Mater. Res. Bull. 46, 147 (2011). https://doi.org/10.1016/j.materresbull.2010.10.013
  35. R. Das, R. Bandyopadhyay and P. Pramanik, Mater. Today Chem. 8, 96 (2018). https://doi.org/10.1016/j.mtchem.2018.03.003
  36. C. Wang, L. Ling, Y. G. Yao and Q. J. Song, Nano Res. 8, 1975 (2015). https://doi.org/10.1007/s12274-015-0707-0
  37. H. Huang, H. Li, A. J. Wang, S. X. Zhong, K. M. Fang and J. J. Feng, Analyst 139, 6536 (2014). https://doi.org/10.1039/C4AN01757A
  38. F. Qu, Q. J. Li and J. M. You, J. Lumin. 177, 133 (2016). https://doi.org/10.1016/j.jlumin.2016.04.040
  39. C. X. Wang, K. L. Jiang, Q. Wu, J. P. Wu and C. Zhang, Chem. Eur. J. 22, 14475 (2016). https://doi.org/10.1002/chem.201602795
  40. Y. M. Yang, W. Q. Kong, H. Li, J. Liu, M. M. Yang, H. Huang, Y. Liu, Z. Y. Wang, Z. Q. Wang, T. K. Sham, J. Zhong, C. Wang, Z. Liu, S. T. Lee and Z. H. Kang, ACS Appl. Mater. Inter. 7, 27324 (2015). https://doi.org/10.1021/acsami.5b08782
  41. S. Bhatt, M. Bhatt, A. Kumar, G. Vyas, T. Gajaria and P. Paul, Colloid. Surface. B, Biointer. 167, 126 (2018). https://doi.org/10.1016/j.colsurfb.2018.04.008
  42. L. H. Shi, L. Li, X. F. Li, G. M. Zhang, Y. Zhang, C. Dong and S. M. Shuang, Sens. Actuators B, Chem. 251, 234 (2017). https://doi.org/10.1016/j.snb.2017.05.065
  43. F. Y. Du, J. N. Li, Y. Hua, M. M. Zhang, Z. Zhou, J. Yuan, J. Wang, W. X. Peng, L. Zhang, S. Xia, D. Q. Wang, S. M. Yang, W. R. Xu, A. H. Gong and Q. X. Shao, J. Biomed. Nanotechnol. 11, 780 (2015). https://doi.org/10.1166/jbn.2015.2008
  44. V. Sharma, A. K. Saini and S. M. Mobin, J. Mater. Chem. B 4, 2466 (2016). https://doi.org/10.1039/C6TB00238B
  45. W. B. Li, Z. Yue, C. Wang, W. Zhang and G. H. Liu, RSC Adv. 3, 20662 (2013). https://doi.org/10.1039/c3ra43330g
  46. L. Guo, J. C. Ge, W. M. Liu, G. L. Niu, Q. Y. Jia, H. Wang and P. F. Wang, Nanoscale 8, 729 (2016). https://doi.org/10.1039/C5NR07153D
  47. Z. X. Gan, H. Xu and Y. L. Hao, Nanoscale 8, 7794 (2016). https://doi.org/10.1039/C6NR00605A
  48. G. E. Lecroy, F. Messina, A. Sciortino, C. E. Bunker, P. Wang, K. A. S. Fernando and Y. P. Sun, J. Phys. Chem. C 121, 28180 (2017). https://doi.org/10.1021/acs.jpcc.7b10129
  49. J. Yang, W. L. Chen, X. P. Liu, Y. Zhang and Y. Bai, Mater. Res. Bull. 89, 26 (2017). https://doi.org/10.1016/j.materresbull.2017.01.013
  50. H. Li, F. Q. Shao, H. Huang, J. J. Feng and A. J. Wang, Sens. Actuators B, Chem. 226, 506 (2016). https://doi.org/10.1016/j.snb.2015.12.018
  51. V. N. Mehta, S. Jha and S. K. Kailasa, Mater. Sci. Eng. C 38, 20 (2014). https://doi.org/10.1016/j.msec.2014.01.038
  52. W. G. Wang, H. Y. Zhang, R. Wang, M. Feng and Y. M. Chen, Nanoscale 6, 2390 (2011).
  53. L. L. Li, G. H. Wu, G. H. Yang, J. Peng, J. W. Zhao and J. J. Zhu, Nanoscale 5, 4015 (2013). https://doi.org/10.1039/c3nr33849e
  54. A. Barati, M. Shamsipur, E. Arkan, L. Hosseinzadeh and H. Abdollahi, Mater. Sci. Eng. C 47, 325 (2015). https://doi.org/10.1016/j.msec.2014.11.035
  55. G. J. Zhao and K. L. Han, J. Phys. Chem. A 111, 2469 (2007). https://doi.org/10.1021/jp068420j
  56. Y. Ling, J. J. Wu, Z. F. Gao, N. B. Li and H. Q. Luo, J. Phys. Chem. C 119, 27173 (2015). https://doi.org/10.1021/acs.jpcc.5b09488
  57. K. L. Jiang, J. P. Wu, Q. Wu, X. J. Wang, C. X. Wang and Y. X. Li, Part. Part. Syst. Charact. 34, 1600197 (2017). https://doi.org/10.1002/ppsc.201600197
  58. S. Chen, Y. L. Yu and J. H. Wang, Anal. Chim. Acta 999, 13 (2018). https://doi.org/10.1016/j.aca.2017.10.026
  59. H. Y. Zhang, Y. Wang, S. Xiao, H. Wang, J. H. Wang and L. Feng, Biosens. Bioelectron. 87, 46 (2017). https://doi.org/10.1016/j.bios.2016.08.010
  60. Y. Liu, X. J. Gong, Y. F. Gao, S. M. Song, X. Wu, S. M. Shuang and C. Dong, RSC Adv. 6, 28477 (2016). https://doi.org/10.1039/C6RA02653B