Browse > Article
http://dx.doi.org/10.1016/j.net.2021.09.023

X-ray / gamma ray radiation shielding properties of α-Bi2O3 synthesized by low temperature solution combustion method  

Reddy, B. Chinnappa (Department of Physics, Presidency University)
Manjunatha, H.C. (Department of Physics, Government College for women)
Vidya, Y.S. (Department of Physics, Lal Bahadur Shastri Government First Grade College, RT Nagar)
Sridhar, K.N. (Department of Physics, Government First Grade College)
Pasha, U. Mahaboob (Department of Physics, Presidency University)
Seenappa, L. (Department of Physics, Government College for women)
Sadashivamurthy, B. (Department of Chemistry, Government First Grade College)
Dhananjaya, N. (Department of Physics, BMS Institute of Technology and Management)
Sathish, K.V. (Department of Physics, Government College for women)
Gupta, P.S. Damodara (Department of Physics, Government College for women)
Publication Information
Nuclear Engineering and Technology / v.54, no.3, 2022 , pp. 1062-1070 More about this Journal
Abstract
In the present communication, pure and stable α-Bismuth Oxide (Bi2O3) nanoparticles (NPs) were synthesized by low temperature solution combustion method using urea as a fuel and calcined at 500℃. The synthesized sample was characterized by using powder X-ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), Energy dispersive X-ray analysis (EDAX), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and UV-Visible absorption spectroscopy. The PXRD pattern confirms the formation of mono-clinic, stable and low temperature phase α-Bi2O3. The direct optical energy band gap was estimated by using Wood and Tauc's relation which was found to be 2.81 eV. The characterized sample was studied for X-ray/gamma ray shielding properties in the energy range 0.081-1.332 MeV using NaI (Tl) detector and multi channel analyzer (MCA). The measured shielding parameters agrees well with the theory, whereas, slight deviation up to 20% is observed below 356 keV. This deviation is mainly due to the influence of atomic size of the target medium. Furthermore an accurate theory is necessary to explain the interaction of X-ray/gamma ray with the NPs.The present work opens new window to use this facile, economical, efficient, low temperature method to synthesize nanomaterials for X-ray/gamma ray shielding purpose.
Keywords
Alpha $Bi_2O_3$; Radiation shielding properties; Solution combustion method; Nanomaterials;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 L. Zhou, W. Wang, H. Xu, S. Sun, M. Shang, Chem A Eur J 15 (2009) 1776.   DOI
2 G.R. Patzke, Y. Zhou, R. Kontic, F. Conrad, Angewandte Chemie International Edition 50 (2011) 826.   DOI
3 A.M. Abu-Dief, W. Mohamed, Mater Res Express 4 (2017), 035039.   DOI
4 A.S. Zoolfakar, R.A. Rani, A.J. Morfa, A.P. O'Mullane, K. Kalantar-Zadeh, j mater chem c 2 (2014) 5247.   DOI
5 A.L. Pereira, D. Errandonea, A. Beltran, L. Gracia, O. Gomis, J.A. Sans, B. Garcia-Domene, A. Miquel-Veyrat, F. Manjon, A. Munoz, et al., J Phy: Condensed Matter 25 (2013) 475402.   DOI
6 G. Murariu, S. Condurache-Bota, N. Tigau, Int J Modern Physics B 26 (2012) 1250049.   DOI
7 S. Sanna, V. Esposito, M. Christensen, N. Pryds, APL Materials 4 (2016) 121101.   DOI
8 S. Sood, S.K. Mehta, A. Sinha, S.K. Kansal, Chem Eng J 290 (2016) 45.   DOI
9 M. Malligavathy, D.P. Padiyan, Adv. Mat. Proc 2 (2017) 51-55.   DOI
10 J.Z. Marinho, R.A. Silva, T.G. Barbosa, E.M. Richter, R.A. Munoz, R.C. Lima, Electroanalysis 25 (2013) 765.   DOI
11 Y. Wang, Y. Li, Journal colloid interface sci 454 (2015) 238.   DOI
12 S.A. Issa, A.M. Ali, G. Susoy, H. Tekin, Y.B. Saddeek, R. Elsaman, H. Somaily, H. Algarni, Ceram. Int. 46 (2020) 20251.   DOI
13 M. Sayyed, A. Askin, M. Zaid, S. Olukotun, M.U. Khandaker, D. Tishkevich, D. Bradley, Radiat. Phys. Chem. 186 (2021).
14 D.I. Tishkevich, S.S. Grabchikov, S.B. Lastovskii, S.V. Trukhanov, T.I. Zubar, D.S. Vasin, A.V. Trukhanov, A.L. Kozlovskiy, M.M. Zdorovets, ACS Appl. Energy Mater 1 (2018) 1695.   DOI
15 L. Kumari, J.-H. Lin, Y.-R. Ma, J Phy: Condensed Matter 19 (2007) 406204.   DOI
16 J. Li, B.Z. Wu, Z.X. Zhou, Micro & Nano Letters 13 (2018) 1443.   DOI
17 B. Sarma, A.L. Jurovitzki, Y.R. Smith, S.K. Mohanty, M. Misra, ACS appl mater interfaces 5 (2013) 1688.   DOI
18 J. Divya, N. Shivaramu, W. Purcell, W. Roos, H. Swart, Appl. Surf. Sci. 497 (2019) 143748.   DOI
19 D. Tishkevich, A. Vorobjova, D.A. Vinnik, in: Materials Science Forum, vol. 946, Trans Tech Publ, 2019, pp. 235-241.   DOI
20 H.C. Manjunatha, J Med Phys/Assoc Med Physicists of India 39 (2014) 112.   DOI
21 H. Manjunatha, B. Rudraswamy, Radiat. Phys. Chem 80 (2011) 14.   DOI
22 L. Seenappa, H. Manjunatha, K. Sridhar, C. Hanumantharayappa, IJPAP 56 (2018). http://nopr.niscair.res.in/handle/123456789/44299.
23 M.F. Turhan, F. Akman, H. Polat, M.R. Kacal, I. Demirkol, Prog. Nucl. Energy 129 (2020) 103504.   DOI
24 M. Tajiri, Y. Tokiya, J. Uenishi, M. Sunaoka, K. Watanabe, Radiother. Oncol. 80 (2006) 391.   DOI
25 I.M. Nikbin, R. Mohebbi, S. Dezhampanah, S. Mehdipour, R. Mohammadi, T. Nejat, Radiat. Phys. Chem. 162 (2019) 157.   DOI
26 K. Gurushantha, K. Anantharaju, S. Sharma, H. Nagaswarupa, S. Prashantha, K.V. Mahesh, L. Renuka, Y. Vidya, H. Nagabhushana, J. Alloys Compd. 685 (2016) 761.   DOI
27 R. Mirji, B. Lobo, in: National Conference on 'Advances in VLSI and Microelectronics, 'In PC Jabin Science College, Huballi, India, 2017, pp. 96-100.
28 D. Stewart, P. Harrison, B. Morgan, Y. Ramachers, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip 571 (2007) 651.   DOI
29 I. Akkurt, H. Akyildirim, B. Mavi, S. Kilincarslan, C. Basyigit, Progress in Nuclear Energy 52 (2010) 620.   DOI
30 H. Tekin, M. Sayyed, S.A. Issa, Radiat. Phys. Chem. 150 (2018) 95.   DOI
31 S. Manohara, S. Hanagodimath, L. Gerward, J. Nucl. Mater 393 (2009) 465.   DOI
32 Q. Huang, S. Zhang, C. Cai, B. Zhou, Materials Letters 65 (2011) 988.   DOI
33 X. Huang, W. Zhang, Y. Tan, J. Wu, Y. Gao, B. Tang, Ceramics International 42 (2016) 2099.   DOI
34 N. Nagaraja, H. Manjunatha, L. Seenappa, K. Sridhar, H. Ramalingam, Radiat. Phys. Chem. 171 (2020) 108723.   DOI
35 H.C. Manjunatha, Radiation Physics and Chemistry 137 (2017) 254.   DOI
36 H. Manjunatha, B. Rudraswamy, Annals of Nuclear Energy 38 (2011) 2271.   DOI
37 W. Dong, C. Zhu, J. Phys. Chem. Solid. 64 (2003) 265.   DOI
38 M. Rashad, H. Tekin, H.M. Zakaly, M. Pyshkina, S.A. Issa, G. Susoy, Nucl Eng Technol 52 (2020) 2078.   DOI
39 H. Oudghiri-Hassani, S. Rakass, F.T. Al Wadaani, K.J. Al-Ghamdi, A. Omer, M. Messali, M. Abboudi, J Taibah University Sci 9 (2015) 508.   DOI
40 I. Uddin, S. Adyanthaya, A. Syed, K. Selvaraj, A. Ahmad, P. Poddar, J. Nanosci. Nanotechnol. 8 (2008) 3909.   DOI
41 S. Patil, K. Anantharaju, D. Rangappa, Y. Vidya, S. Sharma, L. Renuka, H. Nagabhushana, Environ Nanotechnol, Monit Manag 13 (2020) 100268.   DOI
42 A. Mukasyan, K. Manukyan, Nanomaterials Synthesis, Elsevier, 2019, pp. 85-120.
43 H.C. Manjunatha, Radiat. Phys. Chem. 113 (2015) 24.   DOI
44 L. Seenappa, H.C. Manjunatha, B.M. Chandrika, H. Chikka, J Radiat Protect Res 42 (2017) 26.   DOI
45 H.C. Manjunatha, L. Seenappa, K.N. Sridhar, C. Hanumantharayappa, Int. J. Nucl. Energy Sci. Technol 11 (2017) 377.   DOI
46 H.C. Manjunatha, B.M. Chandrika, L. Seenappa, C. Hanumantharayappa, Int. J. Nucl. Energy Sci. Technol 10 (2016) 356.   DOI
47 J. Prasannakumar, Y. Vidya, K. Anantharaju, G. Ramgopal, H. Nagabhushana, S. Sharma, B.D. Prasad, S. Prashantha, R. Basavaraj, H. Rajanaik, et al., Spectrochim. Acta Mol. Biomol. Spectrosc 151 (2015) 131.   DOI
48 V. Fruth, M. Popa, D. Berger, C. Ionica, M. Jitianu, J. Eur. Ceram. Soc. 24 (2004) 1295.   DOI
49 A. Mesbahi, H. Ghiasi, Appl. Radiat. Isot. 136 (2018) 27.   DOI
50 B. Rudraswamy, N. Dhananjaya, H.C. Manjunatha, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip 619 (2010) 171.   DOI
51 K.C. Suresh, H.C. Manjunatha, B. Rudraswamy, Radiation Protection Dosimetry 43 (2008).
52 M.-S. Chen, S.-H. Chen, F.-C. Lai, C.-Y. Chen, M.-Y. Hsieh, W.-J. Chang, J.-C. Yang, C.-K. Lin, Materials 11 (2018) 1685.   DOI
53 G. Viruthagiri, P. Kannan, N. Shanmugam, Photonics Nanostruct-Fund Appl 32 (2018) 35.   DOI
54 R. Jha, R. Pasricha, V. Ravi, Ceram. Int 31 (2005) 495.   DOI
55 J.H. Hubbell, S.M. Seltzer. https://www.osti.gov/biblio/76335, 1995.
56 M. Berger. http://www.nist.gov/pml/data/xcom/index.cfm, 2010.
57 H.C. Manjunatha, B. Rudraswamy, Health physics 104 (2013) 158.   DOI
58 S. Yakout, J Environ Chem Eng 8 (2020) 103644.   DOI
59 Y. Vidya, K. Gurushantha, H. Nagabhushana, S. Sharma, K. Anantharaju, C. Shivakumara, D. Suresh, H. Nagaswarupa, S. Prashantha, M. Anilkumar, J. Alloys Compd. 622 (2015) 86.   DOI
60 H.C. Manjunatha, K.V. Sathish, L. Seenappa, D. Gupta, S.A.C. Raj, Radiat. Phys. Chem. 165 (2019) 108414.   DOI
61 X. Yang, X. Lian, S. Liu, G. Wang, C. Jiang, J. Tian, J. Chen, R. Wang, J Phys D: Appl. Phys. 46 (2012), 035103.   DOI
62 L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, Radiat. Phys. Chem. 60 (2001) 23.   DOI
63 L. Ding, Q. Zhao, J. Zhu, Z. Fan, B. Liu, in: International Conference on Materials Chemistry and Environmental Protection 2015, Atlantis Press, 2016, pp. 17-20.