DOI QR코드

DOI QR Code

Ni Nanoparticle Anchored on MWCNT as a Novel Electrochemical Sensor for Detection of Phenol

  • Wang, Yajing (School of Chemistry and Chemical Engineering State Key Laboratory of Urban Water Resource and Environment Harbin Institute of Technology) ;
  • Wang, Jiankang (School of Chemistry and Chemical Engineering State Key Laboratory of Urban Water Resource and Environment Harbin Institute of Technology) ;
  • Yao, Zhongping (School of Chemistry and Chemical Engineering State Key Laboratory of Urban Water Resource and Environment Harbin Institute of Technology) ;
  • Liu, Chenyu (School of Chemistry and Chemical Engineering State Key Laboratory of Urban Water Resource and Environment Harbin Institute of Technology) ;
  • Xie, Taiping (Chongqing Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM) Yangtze Normal University) ;
  • Deng, Qihuang (Chongqing Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM) Yangtze Normal University) ;
  • Jiang, Zhaohua (School of Chemistry and Chemical Engineering State Key Laboratory of Urban Water Resource and Environment Harbin Institute of Technology)
  • Received : 2018.08.30
  • Accepted : 2018.10.17
  • Published : 2018.11.30

Abstract

Increasing active sites and enhancing electric conductivity are critical factors to improve sensing performance toward phenol. Herein, Ni nanoparticle was successfully anchored on acidified multiwalled carbon nanotube (a-MWCNT) surface by electroless plating technique to avoid Ni nanoparticle agglomeration and guarantee high conductivity. The crystal structure, phase composition and surface morphology were characterized by XRD, SEM and TEM measurement. The as-prepared Ni/a-MWCNT nanohybrid was immobilized onto glassy carbon electrode (GCE) surface for constructing phenol sensor. The phenol sensing performance indicated that Ni/a-MWCNT/GCE exhibited an amazing detection performance with rapid response time of 4 s, a relatively wide detection range from 0.01 mM to 0.48 mM, a detection limit of $7.07{\mu}M$ and high sensitivity of $566.2{\mu}A\;mM^{-1}\;cm^{-2}$. The superior selectivity, reproducibility, stability and applicability in real sample of Ni/a-MWCNT/GCE endowed it with potential application in discharged wastewater.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Harbin Institute of Technology

References

  1. G. J. Rani, M. A. J. Rajan and G. G. Kumar, Res. Chem. Inter. 43, 1 (2016).
  2. P. Chowdhary, A. Raj and R. N. Bharagava, Chemosphere 194, 229 (2018). https://doi.org/10.1016/j.chemosphere.2017.11.163
  3. L. Fernandez, C. Borras and H. Carrero, Electrochim. Acta 52, 872 (2006). https://doi.org/10.1016/j.electacta.2006.06.021
  4. O. Jauregui and M. T. Galceran, Anal. Chim. Acta 340, 191 (1997). https://doi.org/10.1016/S0003-2670(96)00504-1
  5. P. Mussmann, K. Levsen and W. Radeck, Fresenius' J. Anal. Chem. 348, 654 (1994). https://doi.org/10.1007/BF00325568
  6. S. S. Alimpiev, V. V. Mlynski, M. E. Belov and S. M. Nikiforov, Anal. Chem. 67, 181 (1995). https://doi.org/10.1021/ac00097a028
  7. J. Yuan, W. Guo and E. Wang, Anal. Chem. 80, 1141 (2008). https://doi.org/10.1021/ac0713048
  8. L.-M. Lu, L. Zhang, F.-L. Qu, H.-X. Lu, X.-B. Zhang, Z.-S. Wu, S.-Y. Huan, Q.-A. Wang, G.-L. Shen and R.-Q. Yu, Biosens. Bioelectron. 25, 218 (2009). https://doi.org/10.1016/j.bios.2009.06.041
  9. A. Yu, Z. Liang, J. Cho and F. Caruso, Nano Lett. 3, 1203 (2003). https://doi.org/10.1021/nl034363j
  10. A. A. Ensafi, F. Rezaloo and B. Rezaei, Sens. Actuators B Chem. 231, 239 (2016). https://doi.org/10.1016/j.snb.2016.03.018
  11. N. Saraf, E. R. Woods, M. Peppler and S. Seal, Biosens. Bioelectron. 117, 40 (2018). https://doi.org/10.1016/j.bios.2018.05.031
  12. Y. Koskun, A. Savk, B. Sen and F. Sen, Anal. Chim. Acta 1010, 37 (2018). https://doi.org/10.1016/j.aca.2018.01.035
  13. Q. Hu, Q. Wang, C. Jiang, J. Zhang, J. Kong and X. Zhang, Biosens. Bioelectron. 110, 52 (2018). https://doi.org/10.1016/j.bios.2018.03.030
  14. S. Bozkurt, B. Tosun, B. Sen, S. Akocak, A. Savk, M. F. Ebeoglugil and F. Sen, Anal. Chim. Acta 989, 88 (2017). https://doi.org/10.1016/j.aca.2017.07.051
  15. G. Baskaya, Y. Yildiz, A. Savk, T. O. Okyay, S. Eris, H. Sert and F. Sen, Biosens. Bioelectron. 91, 728 (2017). https://doi.org/10.1016/j.bios.2017.01.045
  16. R. Rawal, S. Chawla, Devender and C. S. Pundir, Enzyme Microb. Technol. 51, 179 (2012). https://doi.org/10.1016/j.enzmictec.2012.06.001
  17. B. X. Gu, C. X. Xu, G. P. Zhu, S. Q. Liu, L. Y. Chen and X. S. Li, J. Phys. Chem. B 113, 377 (2009). https://doi.org/10.1021/jp808001c
  18. S. Korkut, B. Keskinler and E. Erhan, Talanta 76, 1147 (2008). https://doi.org/10.1016/j.talanta.2008.05.016
  19. C. C. Mayorga-Martinez, M. Cadevall, M. Guix, J. Ros and A. Merkoci, Biosens. Bioelectron. 40, 57 (2013). https://doi.org/10.1016/j.bios.2012.06.010
  20. K. M. Nurul and H. J. Lee, Talanta 116, 991 (2013). https://doi.org/10.1016/j.talanta.2013.08.003
  21. M. Govindhan, T. Lafleur, B.-R. Adhikari and A. Chen, Electroanalysis 27, 902 (2015). https://doi.org/10.1002/elan.201400608
  22. B. T. P. Quynh, J. Y. Byun and S. H. Kim, Sens. Actuators B Chem. 221, 191 (2015). https://doi.org/10.1016/j.snb.2015.06.067
  23. K. Singh, A. Kaur, A. Umar, G. R. Chaudhary, S. Singh and S. K. Mehta, J. Appl. Electrochem. 45, 253 (2015). https://doi.org/10.1007/s10800-014-0762-3
  24. J. Ahmed, M. M. Rahman, I. A. Siddiquey, A. M. Asiri and M. A. Hasnat, Electrochim. Acta 246, 597 (2017). https://doi.org/10.1016/j.electacta.2017.06.072
  25. T. Spataru and N. Spataru, J. Hazardous Mater. 180, 777 (2010). https://doi.org/10.1016/j.jhazmat.2010.04.058
  26. G. W. Muna, A. Kaylor, B. Jaskowski, L. R. Sirhan and C. T. Kelley, Electroanalysis 23, 2915 (2011). https://doi.org/10.1002/elan.201100406
  27. I. Danaee, M. Jafarian, F. Forouzandeh, F. Gobal and M. G. Mahjani, Int. J. Hydrogen Energy 33, 4367 (2008). https://doi.org/10.1016/j.ijhydene.2008.05.075
  28. K. Ramachandran, T. Raj kumar, K. J. Babu and G. Gnana kumar, Sci. Rep. 6, 36583 (2016). https://doi.org/10.1038/srep36583
  29. P. Vennila, D. J. Yoo, A. R. Kim and G. G. Kumar, J. Alloy. Compd. 703, 633 (2017). https://doi.org/10.1016/j.jallcom.2017.01.044
  30. N. Senthilkumar, G. Gnana Kumar and A. Manthiram, Adv. Energy Mater. 8, 1702207 (2018). https://doi.org/10.1002/aenm.201702207
  31. K. J. Babu, N. Senthilkumar, A. R. Kim and G. G. Kumar, Sens. Actuators B Chem. 241, 541 (2017). https://doi.org/10.1016/j.snb.2016.10.069
  32. P. G. Collins, A. Zettl, H. Bando, A. Thess and R. E. Smalley, Science 278, 100 (1997). https://doi.org/10.1126/science.278.5335.100
  33. J. M. Planeix, N. Coustel, B. Coq, V. Brotons, P. S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier and P. M. Ajayan, J. Am. Chem. Soc. 116, 7935 (1994). https://doi.org/10.1021/ja00096a076
  34. X. Zhou, X. Yan, Z. Hong, X. Zheng and F. Wang, Sens. Actuators B Chem. 255, 2959 (2018). https://doi.org/10.1016/j.snb.2017.09.117
  35. M. A. Subhan, P. Chandra Saha, M. M. Rahman, J. Ahmed, A. M. Asiri and M. Al-Mamun, New J. Chem. 42, 872 (2018). https://doi.org/10.1039/C7NJ04378C
  36. M. M. Rahman, H. B. Balkhoyor and A. M. Asiri, J. Environ. Manage. 188, 228 (2017). https://doi.org/10.1016/j.jenvman.2016.12.008
  37. M. Guix, B. Perez-Lopez, M. Sahin, M. Roldan, A. Ambrosi and A. Merkoci, Analyst 135, 1918 (2010). https://doi.org/10.1039/c000929f
  38. L. A. Goulart, R. Goncalves, A. A. Correa, E. C. Pereira and L. H. Mascaro, Microchimica Acta 185, 12 (2018). https://doi.org/10.1007/s00604-017-2540-5
  39. L. M. Ang, T. S. A. Hor, G. Q. Xu, C. H. Tung, S. P. Zhao and J. L. S. Wang, Decoration of Activated Carbon Nanotubes with Copper and Nickel (2013).
  40. L. Li, Z. Lou, W. Han, D. Chen, K. Jiang and G. Shen, Adv. Mater. Technol. 2, 1600282 (2017). https://doi.org/10.1002/admt.201600282
  41. G.-C. Chen, X.-Q. Shan, Y.-S. Wang, B. Wen, Z.-G. Pei, Y.-N. Xie, T. Liu and J. J. Pignatello, Water Res. 43, 2409 (2009). https://doi.org/10.1016/j.watres.2009.03.002
  42. I. Czekaj, F. Loviat, F. Raimondi, J. Wambach, S. Biollaz and A. Wokaun, Appl. Catal. A Gen. 329, 68 (2007). https://doi.org/10.1016/j.apcata.2007.06.027
  43. A. F. Carley, S. D. Jackson, M. W. Roberts and J. O'Shea, Surf. Sci. 454-456, 141 (2000). https://doi.org/10.1016/S0039-6028(00)00143-6
  44. C. Zhao, C. Shao, M. Li and K. Jiao, Talanta 71, 1769 (2007). https://doi.org/10.1016/j.talanta.2006.08.013
  45. P. F. Luo, T. Kuwana, D. K. Paul and P. M. A. Sherwood, Anal. Chem. 68, 3330 (1996). https://doi.org/10.1021/ac960236e
  46. H. Huo, Y. Zhao and C. Xu, J. Mater. Chem. A 2, 15111 (2014). https://doi.org/10.1039/C4TA02857K
  47. J. Chen, Q. Xu, Y. Shu and X. Hu, Talanta 184, 136 (2018). https://doi.org/10.1016/j.talanta.2018.02.057
  48. X. Dai, W. Deng, C. You, Z. Shen, X. Xiong and X. Sun, Anal. Methods 10, 1680 (2018). https://doi.org/10.1039/C8AY00370J
  49. W. Qin, X. Liu, H. Chen and J. Yang, Anal. Methods 6, 5734 (2014). https://doi.org/10.1039/C3AY41855C
  50. B. T. P. Quynh, Y. B. Ji and H. K. Sang, Sens. Actuators B Chem. 221, 191 (2015). https://doi.org/10.1016/j.snb.2015.06.067
  51. M. Guix, B. Perezlopez, M. Sahin, M. Roldan, A. Ambrosi and A. Merkoci, Analyst 135, 1918 (2010). https://doi.org/10.1039/c000929f