Browse > Article
http://dx.doi.org/10.14478/ace.2019.1011

Study on Synthesis of Pine Leaf Extract Intercalated Mg-Phyllosilicate Sandwich Nanoparticles and Antimicrobial Activity against Cutaneous Microorganisms  

Kim, Seong Yeol (Lucky Research and Development Center (LRDC), Lucky Industry Co., Ltd.)
Choi, Yoo-Sung (Lucky Research and Development Center (LRDC), Lucky Industry Co., Ltd.)
Publication Information
Applied Chemistry for Engineering / v.30, no.2, 2019 , pp. 254-259 More about this Journal
Abstract
In this study, we synthesized the pine leaf extract intercalated layered Mg-phyllosilicate nanoparticles (PLE/MgP) via one-pot synthesis. MgP was successfully synthesized with the octahedral and tetrahedral structure by XRD analysis and a gap of interlayer distance (d-spacing) between MgP sheets by the intercalation of PLE was confirmed. As a result of the investigation of antimicrobial activity against cutaneous microorganisms by the minimum inhibitory concentration (MIC) and bactericidal concentration (MBC) analyses, the antimicrobial activity of PLE/MgP was more improved than that of MgP or PLE. The prepared sandwich-structured PLE/MgP organic/inorganic hybrid materials will be useful in the field of numerous applications containing cosmetic and biomedical materials.
Keywords
Pine leaf extract; Mg-phyllosilicate; Intercalation; Antimicrobial; Cutaneous microorganism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. A. Grice and J. A. Segre, The skin microbiome, Nat. Rev. Microbiol., 9, 244-253 (2011).   DOI
2 T. Nakatsuji, T. H. Chen, S. Narala, K. A. Chun, A. M. Two, T. Yun, F. Shafiq, P. F. Kotol, A. Bouslimani, A. V. Melnik, H. Latif, J. N. Kim, A. Lockhart, K. Artis, G. David, P. Taylor, J. Streib, P. C. Dorrestein, A. Grier, S. R. Gill, K. Zengler, T. R. Hata, D. Y. M. Leung, and R. L. Gallo, Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis, Sci. Transl. Med., 9, eaah4680 (2017).   DOI
3 T. Kobayashi, M. Glatz, K. Horiuchi, H. Kawasaki, H. Akiyama, D. H. Kaplan, H. H. Kong, M. Amagai, and K. Nagao, Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis, Immunity, 42, 756-766 (2015).   DOI
4 C. Dessinioti and A. Katsambas, Propionibacterium acnes and antimicrobial resistance in acne, Clin. Dermatol., 35, 163-167 (2017).   DOI
5 A. Aditya, S. Chattopadhyay, D. Jha, H. K. Gautam, S. Maiti, and M. Ganguli, Zinc oxide nanoparticles dispersed in ionic liquids show high antimicrobial efficacy to skin-specific bacteria, ACS Appl. Mater. Interfaces, 10, 15401-15411 (2018).   DOI
6 M. H. Yim, T. G. Hong, and J. H. Lee, Antioxidant and antimicrobial activities of fermentation and ethanol extracts of pine needles (Pinus densiflora), Food Sci. Biotechnol., 15, 582-588 (2006).
7 M. Comune, A. Rai, K. K. Chereddy, S. Pinto, S. Aday, A. F. Ferreira, A. Zonari, J. Blersch, R. Cunha, R. Rodriques, J. Lerma, P. N. Simoes, V. Preat, and L. Ferreira, Antimicrobial peptide-gold nanoscale therapeutic formulation with high skin regenerative potential, J. Control. Release, 262, 58-71 (2017).   DOI
8 I. A. Aljuffali, C. H. Huang, and J. Y. Fang, Nanomedical strategies for targeting skin microbiomes, Curr. Drug Metab., 16, 255-271 (2015).   DOI
9 V. Dhanalakshmi, T. R. Nimal, M. Sabitha, R. Biswas, and R. Jayakumar, Skin and muscle permeating antibacterial nanoparticles for treating Staphylococcus aureus infected wounds, J. Biomed. Mater. Res. B, 104, 797-807 (2016).   DOI
10 W. Si, J. Gong, R. Tsao, M. Kalab, R. Yang, and Y. Yin, Bioassay-guided purification and identification of antimicrobial components in Chinese green tea extract, J. Chromatogr. A, 1125, 204-210 (2006).   DOI
11 B. Wilson, G. Abraham, V. S. Manju, M. Mathew, B. Vimala, S. Sundaresan, and B. Nambisan, Antimicrobial activity of Curcuma zedoaria and Curcuma malabarica tubers, J. Ethnopharmacol., 99, 147-151 (2005).   DOI
12 D. Yan, C. Jin, X. H. Xiao, and X. P. Dong, Antimicrobial properties of berberines alkaloids in Coptis chinensis Franch by microcalorimetry, J. Biochem. Biophys. Methods, 70, 845-849 (2008).   DOI
13 Y. S. Lim, M. J. Bae, and S. H. Lee, Antimicrobial effects of Pinus densiflora Sieb. et Zucc. ethanol extract on Listeria monocytogenes, J. Korean Soc. Food Sci. Nutr., 31, 333-337 (2002).   DOI
14 H. Koo, B. P. F. A. Gomes, P. L. Rosalen, G. M. B. Ambrosano, Y. K. Park, and J. A. Cury, In vitro antimicrobial activity of propolis and Arnica montana against oral pathogens, Arch. Oral Biol., 45, 141-148 (2000).   DOI
15 Y. Han, P. Li, Y. Xu, H. Li, Z. Song, Z. Nie, Z. Chen, and S. Yao, Fluorescent nanosensor for probing histone acetyltransferase activity based on acetylation protection and magnetic graphitic nanocapsules, Small, 11(7), 877-885 (2015).   DOI
16 P. K. Koukos, K. I. Papadopoulou, D. T. Patiaka, and A. D. Papagiannopoulos, Chemical composition of essential oils from needles and twigs of balkan pine (Pinus peuce Grisebach) grown in Northern Greece, J. Agric. Food Chem., 48, 1266-1268 (2000).   DOI
17 W. C. Zeng, Z. Z. Zhang, H. Gao, L. R. Jia, and Q. He, Chemical composition, antioxidant, and antimicrobial activities of essential oil from pine needle (Cedrus deodara), J. Food. Sci., 77, C824-C829 (2012).   DOI
18 Y. P. Wu, X. Liang, X. Y. Liu, K. Zhong, B. Gao, Y. N. Huang, and H. Gao, Cedrus deodara pine needle as a potential source of natural antioxidants: Bioactive constituents and antioxidant activities, J. Funct. Foods, 14, 605-612 (2015).   DOI
19 G. C. Yen, P. D. Duh, D. W. Huang,C. L. Hsu, and T. Y. C. Fu, Protective effect of pine (Pinus morrisonicola Hay.) needle on LDL oxidation and its anti-inflammatory action by modulation of iNOS and COX-2 expression in LPS-stimulated RAW 264.7 macrophages, Food Chem. Toxicol., 46, 175-185 (2008).   DOI
20 J. H. Choy, J. S. Jung, J. M. Oh, M. Park, J. Jeong, Y. K. Kang, and O. J. Han, Layered double hydroxide as an efficient drug reservoir for folate derivatives, Biomaterials, 25, 3059-3064 (2004).   DOI
21 H. K. Han, Y. C. Lee, M. Y. Lee, A. J. Patil, and H. J. Shin, Magnesium and calcium organophyllosilicates: Synthesis and in-vitro cytotoxicity study, ACS Appl. Mater. Interfaces, 3, 2564-2572 (2011).   DOI
22 H. He, Y. Ma, J. Zhu, P. Yuan, and Y. Qing, Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration, Appl. Clay Sci., 48, 67-72 (2010).   DOI
23 Y. Lee, Y. Choi, M. Choi, H. Yang, K. Liu, and H. Shin, Dual-end functionalized magnesium organo-(phyllo)silicates via co-condensation and its antimicrobial activity, Appl. Clay Sci., 83-84, 474-485 (2013).   DOI
24 G. Chandrasekaran, H. K. Han, G. J. Kim, and H. J. Shin, Antimicrobial activity of delaminated aminopropyl functionalized magnesium phyllosilicates, Appl. Clay Sci., 53, 729-736 (2011).   DOI
25 R. A. Holley and D. Patel, Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials, Food Microbiol., 22, 273-292 (2005).   DOI
26 W. C. Zeng, Q. He, Q. Sun, K. Zhong, and H. Gao, Antibacterial activity of water-soluble extract from pine needles of Cedrus deodara, Int. J. Food Microbiol., 153, 78-84 (2012).   DOI
27 J. S. Kim, I. Park, E. S. Jeong, K. Jin, W. M. Seong, G. Yoon, H. Kim, B. Kim, K. T. Nam, and K. Kang, Amorphous cobalt phyllosilicate with layered crystalline motifs as water oxidation catalyst, Adv. Mater., 29(21), 1606893 (2017).   DOI
28 P. Gu, S. Zhang, X. Li, X. Wang, T. Wen, R. Jehan, A. Alsaedi, T. Hayat, and X. Wang, Recent advances in layered double hydroxy-based nanomaterials for the removal of radionuclides from aqueous solution, Environ. Pollut., 240, 493-505 (2018).   DOI
29 L. M. Liu, L. P. Jiang, F. Liu, G. Y. Lu, E. S. Abdel-Halim, and J. J. Zhu, Hemoglobin/DNA/layered double hydroxide composites for biosensing applications, Anal. Methods, 5, 3565-3571 (2013).   DOI
30 M. P. Schmidt and C. E. Martinez, Kinetic and conformational insights of protein adsorption onto montmorillonite revealed using in situ ATR-FTIR/2D-COS, Langmuir, 32, 7719-7729 (2016).   DOI
31 J. H. Yang, J. H. Lee, H. J. Ryu, A. A. Elzatahry, Z. A. Alothman, and J. H. Choy, Drug-clay nanohybrids as sustained delivery systems, Appl. Clay Sci., 130, 20-32 (2016).   DOI
32 Y. Zhang, M. Long, P. Huang, H. Yang, S. Chang, Y. Hu, A. Tang, and L. Mao, Emerging integrated nanoclay-facilitated drug delivery system for papillary thyroid cancer therapy, Sci. Rep., 6, 33335 (2016).   DOI
33 K. Haraguchi, Synthesis and properties of soft nanocomposite materials with novel organic/inorganic network structures, Polym. J., 43, 223-241 (2011).   DOI