DOI QR코드

DOI QR Code

Synthesis of Au Nanoparticles Functionalized 1D α-MoO3 Nanobelts and Their Gas Sensing Properties

  • Wang, Liwei (School of Marine Sciences Guangxi University) ;
  • Wang, Shaopeng (School of Marine Sciences Guangxi University) ;
  • Fu, Hao (School of Marine Sciences Guangxi University) ;
  • Wang, Yinghui (School of Marine Sciences Guangxi University) ;
  • Yu, Kefu (School of Marine Sciences Guangxi University)
  • Received : 2018.07.06
  • Accepted : 2018.08.29
  • Published : 2018.10.31

Abstract

A novel sensor material of Au nanoparticles (NPs) functionalized 1D ${\alpha}-MoO_3$ nanobelts (NBs) was fabricated by a facile lysine-assisted approach. The obtained $Au/{\alpha}-MoO_3$ product was characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive X-ray (EDX), and X-ray photoelectron spectra (XPS). Then, in order to investigate the gas sensing performances of our samples, a comparative gas sensing study was carried out on both the ${\alpha}-MoO_3$ NBs before and after Au NPs decoration by using ethanol vapor as the molecular probe. The results turned out that, after the functionalization of Au NPs, the sensor exhibited improved gas-sensing characteristics than the pure ${\alpha}-MoO_3$, such as response and recovery time, optimal operating temperature (OT) and excellent selectivity. Take for example 200 ppm of ethanol, the response/recovery times were 34 s/43 s and 5.7 s/10.5 s, respectively, while the optimal operating temperature (OT) was lower to $200^{\circ}C$ rather than $250^{\circ}C$. Besides, the functionalized sensor showed a higher response to ethanol at $200^{\circ}C$, and response was 1.6 times higher than the pure $MoO_3$. The mechanism of such improved sensing properties was interpreted, which might be attributed to the spillover effect of Au NPs and the electronic metal-support interaction.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, BaGui Scholars Program Foundation, Natural Science Foundation of Guangxi Province

References

  1. Q. Wan, Q.-H. Li, Y.-J. Chen, T.-H. Wang, X.-L. He, J.-P. Li and C.-L. Lin, Appl. Phys. Lett. 84, 3654 (2004). https://doi.org/10.1063/1.1738932
  2. Y.-X. Yin, L.-Y. Jiang, L.-J. Wan, C.-J. Li and Y.-G. Guo, Nanoscale 3, 1802 (2011). https://doi.org/10.1039/c0nr00843e
  3. Y. Wang, J.-L. Cao, S.-R. Wang, X.-Z. Guo, J. Zhang, H.-J. Xia, S.-M. Zhang and S.-H. Wu, J. Phys. Chem. C 112, 17804 (2008). https://doi.org/10.1021/jp806430f
  4. G. Wang, Y. Ji, X.-R. Huang, X.-Q. Yang, P. I. Gouma and M. Dudley, J. Phys. Chem. B 110, 23777 (2006). https://doi.org/10.1021/jp0635819
  5. X.-H. Liu, J. Zhang, T.-L. Yang, X.-Z. Guo, S.-H. Wu and S.-R. Wang, Sens. Actuators B Chem. 156, 918 (2011). https://doi.org/10.1016/j.snb.2011.03.006
  6. L.-L. Sui, Y.-M. Xu, X.-F. Zhang, X.-L. Cheng, S. Gao, H. Zhao, Z. Cai and L.-H. Huo, Sens. Actuators B Chem. 208, 406 (2015). https://doi.org/10.1016/j.snb.2014.10.138
  7. S.-L. Bai, S. Chen, L.-Y. Chen, K.-W. Zhang, R.-X. Luo, D.-Q. Li and C.-C. Liu, Sens. Actuators B Chem. 174, 51 (2012). https://doi.org/10.1016/j.snb.2012.08.015
  8. S.-L. Bai, C. Chen, Y. Tian, S. Chen, R.-X. Luo, D.-Q. Li, A.-F. Chen and C.-C. Liu, Mater. Res. Bull. 64, 252 (2015). https://doi.org/10.1016/j.materresbull.2014.12.049
  9. A. M. Taurino, A. Forleo, L. Francioso, P. Siciliano, M. Stalder and R. Nesper, Appl. Phys. Lett. 88, 152111 (2006). https://doi.org/10.1063/1.2192571
  10. D.-S. Jiang, Y. Wang, W. Wei, F. Li, Y.-J. Li, L.-H. Zhu, C.-H. Feng, C.-X. Liu and S.-P. Ruan, RSC Adv. 5, 18655 (2015). https://doi.org/10.1039/C4RA16976J
  11. H. M. M. Munasinghe Arachchige, D. Zappa, N. Poli, N. Gunawardhana and E. Comini, Sens. Actuators B Chem. 269, 331 (2018).
  12. M. Shafiei, J. Yu, G. Chen, P. T. Lai, N. Motta, W. Wlodarski and K. Kalantar-zadeh, Sens. Actuators B Chem. 187, 267 (2013). https://doi.org/10.1016/j.snb.2012.11.019
  13. S.-L. Bai, C. Chen, D.-F. Zhang, R.-X. Luo, D.-Q. Li, A.-F. Chen and C.-C. Liu, Sens. Actuators B Chem. 204, 754 (2014). https://doi.org/10.1016/j.snb.2014.08.017
  14. L.-L. Xin, S. Yuan, Z.-H. Chen, Y.-J. Chen and X.-Y. Xue, Nanotechnology 22, 225502 (2011). https://doi.org/10.1088/0957-4484/22/22/225502
  15. Y.-J. Chen, G. Xiao, T.-S. Wang, F.-Z. Hang, Y. Ma, P. Gao, C.-L. Zhu, E. Zhang, Z. Xu and Q.-H. Li, Sens. Actuators B Chem. 155, 270 (2011). https://doi.org/10.1016/j.snb.2010.12.034
  16. T.-S. Wang, Q.-S. Wang, C.-L. Zhu, Q.-Y. Ouyang, L.-H. Qi, C.-Y. Li, G. Xiao, P. Gao and Y.-J. Chen, Sens. Actuators B Chem. 171-172, 256 (2012). https://doi.org/10.1016/j.snb.2012.03.058
  17. Y.-J. Chen, F.-N. Meng, C. Ma, Z.-W. Yang, C.-L. Zhu, Q.-Y. Ouyang, P. Gao, J.-Q. Li and C.-W. Sun, J. Mater. Chem. 22, 12900 (2012). https://doi.org/10.1039/c2jm31557b
  18. D.-S. Jiang, W. Wei, F. Li, Y.-J. Li, C.-X. Liu, D.-M. Sun, C.-H. Feng and S.-P. Ruan, RSC Adv. 5, 39442 (2015). https://doi.org/10.1039/C5RA05661F
  19. J.-T. Li, L.-W. Wang, H.-J. Liu, J. Zhao, X. Li, H. Wei and Y.-F. Han, J. Alloy. Compd. 694, 939 (2017). https://doi.org/10.1016/j.jallcom.2016.10.142
  20. Y. Zhang, Q. Xiang, J.-Q. Xu, P.-C. Xu, Q.-Y. Pan and F. Li, J. Mater. Chem. 19, 4701 (2009). https://doi.org/10.1039/b822784e
  21. X.-H. Liu, J. Zhang, X.-Z. Guo, S.-H. Wu and S.-R. Wang, Nanoscale 2, 1178 (2010). https://doi.org/10.1039/c0nr00015a
  22. A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer and M. Moskovits, Nano Lett. 5, 667 (2005). https://doi.org/10.1021/nl050082v
  23. J. Zhang, X.-H. Liu, X.-Z. Guo, S.-H. Wu and S.-R. Wang, Chem. Eur. J. 16, 8108 (2010). https://doi.org/10.1002/chem.201000096
  24. M. H. Yaacob, M. Breedon, K. Kalantar-Zadeh and W. Wlodarski, Sens. Actuators B: Chem. 137, 115 (2009). https://doi.org/10.1016/j.snb.2008.12.035
  25. H.-J. Xia, Y. Wang, F.-H. Kong, S.-R. Wang, B.-L. Zhu, X.-Z. Guo, J. Zhang, Y.-M. Wang and S.-H. Wu, Sens. Actuators B: Chem. 134, 133 (2008). https://doi.org/10.1016/j.snb.2008.04.018
  26. Q. Xiang, G.-F. Meng, H.-B. Zhao, Y. Zhang, H. Li, W.-J. Ma and J.-Q. Xu, J. Phys. Chem. C 114, 2049 (2010). https://doi.org/10.1021/jp909742d
  27. S. Kim, S. Park, S. Park and C. Lee, Sens. Actuators B: Chem. 209, 180 (2015). https://doi.org/10.1016/j.snb.2014.11.106
  28. S. Zhang, P. Song, J. Zhang, H.-H. Yan, J. Li, Z.-X. Yang and Q. Wang, Sens. Actuators B: Chem. 242, 983 (2017). https://doi.org/10.1016/j.snb.2016.09.155
  29. J. Zhang, P. Song, Z.-Q. Li, S. Zhang, Z.-X. Yang and Q. Wang, J. Alloy. Compd. 685, 1024 (2016). https://doi.org/10.1016/j.jallcom.2016.06.257
  30. L. Fang, Y.-Y. Shu, A.-Q. Wang and T. Zhang, J. Phys. Chem. C 111, 2401 (2007). https://doi.org/10.1021/jp065791r
  31. S.-L. Bai, Y.-H. Zhao, J.-H. Sun, Z.-F. Tong, R.-X. Luo, D.-Q. Li and A.-F. Chen, Sens. Actuators B: Chem. 239, 131 (2017). https://doi.org/10.1016/j.snb.2016.07.174
  32. S.-L. Bai, C. Chen, R.-X. Luo, A.-F. Chen and D.-Q. Li, Sens. Actuators B: Chem. 216, 113 (2015). https://doi.org/10.1016/j.snb.2015.04.036
  33. V. M. Mohan, W. Chen and K. Murakami, Mater. Res. Bull. 48, 603 (2013). https://doi.org/10.1016/j.materresbull.2012.11.041
  34. W. S. Kim, H. C. Kim and S.-H. Hong, J. Nanopart. Res. 12, 1889 (2010). https://doi.org/10.1007/s11051-009-9751-6
  35. H.-L. Yu, L. Li, X.-M. Gao, Y. Zhang, F.-N. Meng, T.-S. Wang, G. Xiao, Y.-J. Chen and C.-L. Zhu, Sens. Actuators B: Chem. s171, 679 (2012).
  36. X.-F. Chu, S.-M. Liang, W.-Q. Sun, W.-B. Zhang, T.-Y. Chen and Q.-F. Zhang, Sens. Actuators B: Chem. 148, 399 (2010). https://doi.org/10.1016/j.snb.2010.05.049
  37. F. Li, C. Li, L.-H. Zhu, W.-B. Guo, L. Shen, S.-P. Wen and S.-P. Ruan, Sens. Actuators B: Chem. 223, 761 (2016). https://doi.org/10.1016/j.snb.2015.10.005
  38. P.-V. Tong, N. D. Hoa, N. V. Duy, D. T. T. Le and N. V. Hieu, Sens. Actuators B: Chem. 223, 453 (2016). https://doi.org/10.1016/j.snb.2015.09.108
  39. L.-W. Wang, S.-R. Wang, M.-J. Xu, X.-J. Hu, H.-X. Zhang, Y.-S. Wang and W.-P. Huang, Phys. Chem. Chem. Phys. 15, 17179 (2013). https://doi.org/10.1039/c3cp52392f