• Title/Summary/Keyword: TBM construction

Search Result 201, Processing Time 0.02 seconds

Analysis on Downtime element of Gripper TBM based on field data (현장 데이터 분석을 통한 Gripper TBM의 Downtime 요소 분석)

  • Park, Jinsoo;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.393-402
    • /
    • 2021
  • The first TBM introduced in Korea was the gripper TBM, which was applied to the Gudeok Waterway Tunnel in 1985. In the initial stage of the introduction of the gripper TBM, many applications were mainly focused on waterway tunnels (Tunnel Mechanized Construction Design, 2008). Currently, the construction range of gripper TBM in Korea is widely applied to not only waterway tunnels, but also subways, railway tunnels, and TBM+NATM expansion. Overseas, gripper TBM is generally applied, and even when NATM tunnel is applied, it is applied as an exploration tunnel because of the excellent advance rate of gripper TBM and used as an evacuation tunnel after completion. Due to the fast excavation speed, the application of the gripper TBM in the rock section of weathered rock or higher can minimize the environmental and civil complaints caused by creating a large number of work areas when planning long tunnels or mountain tunnels. In this study, the work process of the general gripper TBM was analyzed by analyzing the construction cycle and the gripper TBM with a diameter of 2.6~5.0 m, which was applied the most in Korea. Downtime was investigated and analyzed.

Analysis of Standard Construction by TBM Diameter through the Rock Scenario Models in the Field (현장 암반 시나리오 모델을 통한 TBM 구경별 표준 공사기간 분석)

  • Park, Hong Taea;Lee, Yang Kyu
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.2
    • /
    • pp.195-205
    • /
    • 2013
  • Construction Management means a comprehensive plan of given the resources and the operation of the elements to complete the construction within the construction period. The construction period of these shall be determined by calculation based on reliable initial business. However, in actual field, inaccurate task duration is determined to the intuitive judgments of representative, reference of a similar project construction period of the past. As previous studies for the improvement of existing methods, This study presented a standard model that can be utilized in the early stages of construction projects for the TBM method operating by diameter (2.6m, 3.0m, 3.5m, 5.0m, 8.0m), and This study presented and calculated construction period which can estimated quickly the entire outline the construction period Therefore, When performing TBM construction work in the future, the total construction period which presented and analyze by TBM diameter, can be used as a useful material which plan and manage construction contracts, construction estimating, construction planning to the basic planning stage, and the basic design stage.

Analysis of correlation between shield TBM construction field data and settlement measurement data (쉴드 TBM 시공데이터와 지반침하 계측데이터 간 상관성 분석)

  • Jung, Ye-Rim;Nam, Kyoung-Min;Kim, Han-Eol;Ha, Sang-Gui;Yun, Ji-Seok;Cho, Jae-Eun;Yoo, Han-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.79-94
    • /
    • 2022
  • The demand for tunnel construction is increasing as part of underground space development due to urban saturation. The shield TBM method minimizes vibration and noise and minimizes ground deformation that occurs simultaneously with excavation, and shield TBM is generally applied to tunnel construction in urban areas. The importance of urban ground settlement prediction is increasing day by day, and in the case of shield TBM construction, ground deformation is minimized, but ground settlement due to tunnel excavation inevitably occurs. Therefore, in this study, the correlation between shield TBM, which is highly applicable to urban areas, and ground settlement is analyzed to suggest the shield TBM construction factors that have a major effect on ground settlement. Correlation analysis was performed between the shield TBM construction data and ground settlement measurement data collected at the actual site, and the degree of correlation was expressed as a correlation coefficient "r". As a result, the main construction factors of shield TBM affecting ground settlement were thrust force, torque, chamber pressure, backfill pressure and muck discharge. Based on the results of this study, it is expected to contribute to the presentation of judgment criteria for major construction data so that the ground settlement can be predicted and controlled in advance when operating the shield TBM in the future.

A Study on the Operation Development Method through the Application Result TBM Tunneling in the Bard Rock (암반터널에서의 TBM 공법 적용 사례 분석을 통한 운영 개선 방안)

  • Song, Young-Sun;Choi, Jae-Jin;Park, Hong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.1050-1058
    • /
    • 2008
  • The application of TBM tunneling has been progressively increased since the first entrance into Korea in 1985. In order to an apprehension and operation development of TBM method which has excellent boring in hard rock tunnel, this study has analyzed mutual relation of lose time and TBM boring from actual construction result TBM tunneling. This study compared an analyzed result with TBM tunnelling construction results of Korea, America, Japan, analyzed a primary factor of TBM boring effect and suggested operation development method from the analyzed results. accordingly this study can be used an index when similar construction apply TBM method to planning steps.

Analysis of Standard Cost and the Construction Period Applied TBM Excavation Method (TBM 굴착 공법 적용 구경별 표준 공사비 및 공사기간 분석 연구)

  • Park, Hong Tae
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.4
    • /
    • pp.319-327
    • /
    • 2012
  • This research collected work drilling report of TBM method site developed by WRITH company to TBM equipment company in Germany and analyzed work operating productivity. Based the data analyzed TBM operating productivity, This research derived and presented excavation speed(m/day) by TBM diameter (2.6m, 3.0m, 3.5m, 5.0m, 8.0m) and rock. Also, based on the excavation speed(m/day) by TBM diameter, This research estimated a day direct construction cost and total direct construction costs by applying a direct construction cost which spent on per 1m. Based on hard rock 40.0%, soft rock 30.0%, usually rock 20%, weathered rock 10.0%, TBM boring velocity, m per cost, total construction period shall estimate the construction cost and the construction period by the effective use by diameter when future applying TBM method to the basic planning stages and in the preliminary design phase.

Statistical Characteristics and Rational Estimation of Rock TBM Utilization (암반굴착용 TBM 가동율의 통계적 특성 및 합리적 추정에 관한 연구)

  • Ko, Tae Young;Kim, Taek Kon;Lee, Dae Hyuck
    • Tunnel and Underground Space
    • /
    • v.29 no.5
    • /
    • pp.356-366
    • /
    • 2019
  • Various TBM performance prediction models have been developed and most of them were considered penetration rate only. Despite the fact that some models have suggested equations and charts for estimating the utilization factor, but there are a few studies to estimate the TBM utilization factor. Utilization factor is affected by the type of TBM machine, operation, maintenance of machine, geological conditions, contractor experience and other factors. In this study, more than 100 case studies are analyzed to determine the relationship between the utilization factor and RMR, geological conditions, TBM types, tunnel length, and TBM diameter. Simple and multiple linear regression analysis are performed to develop predictive models for the utilization factor. The predictive model with explanatory variables of geological conditions, TBM types, tunnel length, and TBM diameter does not give a good correlation. The predictive models with explanatory variable of RMR give higher values of the coefficient of determination.

Application of TBM for Mining and Energy Resources Development (광물과 에너지자원 개발을 위한 TBM 활용사례)

  • Ko, Tae Young;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.460-468
    • /
    • 2021
  • A TBM is an equipment that excavates a tunnel with a full face by rotating a circular cutter head and its advantages are fast excavation rate and safe construction. A TBM, which is primarily used for tunnel excavation on civil construction sites, is easily adaptable to information and communication technology. Research related to unmanned and automated technology is being actively pursued. TBM applications for mining and energy resource development in other countries were investigated in this study. The difference of TBM applications between the mining and energy resource development and civil construction sites was examined. Technical factors such as geological conditions, depth, site access, TBM launching, alignment and inclination, TBM size, and others that should be considered when choosing a TBM were investigated. Finally, the advantages and disadvantages of TBM application in mines and the technical requirements for TBM for successful mine application are summarized.

A Study on the Operation Development Method through the Application Results Large-Diameter Tunnel (대구경 터널공법 적용 사례분석을 통한 운영 개선방안)

  • Lee, Yang Kyu
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.2
    • /
    • pp.108-118
    • /
    • 2012
  • The application of TBM tunneling has been progressively increased since the first entrance into korea in 1985. In order to an apprehension and operation development of TBM method which has excellent boring in hard rock tunnel, this study has analyzed mutual relation of lose time and TBM boring from actual construction results TBM tunneling. This study compared this analyzed results with TBM tunnelling construction results of korea, america, japan, analyzed a primary factor of TBM boring effect and suggested operation development method from the analyzed results. accordingly this study can be used an index when contract apply TBM method to planning steps.

Current Status of Technical Development for TBM Simulator (국내·외 TBM 시뮬레이터 개발 현황)

  • Choi, Soon-Wook;Lee, Chulho;Kang, Tae-Ho;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.433-445
    • /
    • 2020
  • Professional TBM Operator is in short supply worldwide, and insufficient construction experience of new personnel using TBM can lead to a decline in response capabilities when various construction risks occur. The fact that the TBM construction quality greatly depends on the skill and experience of the TBM operator, and the decrease in productivity due to insufficient skilled manpower, and the decrease in safety due to the decrease in skill level are frequently discussed problems in the TBM industry. To this end, several overseas companies and organizations have developed simulators, and a simulator is being developed in Korea. The International Tunneling Association is planning a comprehensive training, including classroom training, e-learning, simulator training and field training. Given the progress at home and abroad, TBM driver training and formal recognition of training through certification or licensing is expected to become the norm in the near future.