• Title/Summary/Keyword: T-periodic positive solution

Search Result 13, Processing Time 0.027 seconds

EXISTENCE OF POSITIVE T-PERIODIC SOLUTIONS OF RATIO-DEPENDENT PREDATOR-PREY SYSTEMS

  • Ryu, Kimun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.27-35
    • /
    • 2021
  • We study the existence of positive T-periodic solutions of ratio-dependent predator-prey systems with time periodic and spatially dependent coefficients. The fixed point theorem by H. Amann is used to obtain necessary and sufficient conditions for the existence of positive T-periodic solutions.

EXISTENCE OF THREE POSITIVE PERIODIC SOLUTIONS OF NEUTRAL IMPULSIVE FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Liu, Yuji;Xia, Jianye
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.243-256
    • /
    • 2010
  • This paper is concerned with the neutral impulsive functional differential equations $$\{{x'(t)\;+\;a(t)x(t)\;=\;f(t,\;x(t\;-\;\tau(t),\;x'(t\;-\;\delta(t))),\;a.e.\;t\;{\in}\;R, \atop {\Delta}x(t_k)\;=\;b_kx(t_k),\;k\;{\in}\;Z.$$ Sufficient conditions for the existence of at least three positive T-periodic solution are established. Our results generalize and improve the known ones. Some examples are presented to illustrate the main results.

UNIQUE POSITIVE SOLUTION FOR A CLASS OF THE SYSTEM OF THE NONLINEAR SUSPENSION BRIDGE EQUATIONS

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.16 no.3
    • /
    • pp.355-362
    • /
    • 2008
  • We prove the existence of a unique positive solution for a class of systems of the following nonlinear suspension bridge equation with Dirichlet boundary conditions and periodic conditions $$\{{u_{tt}+u_{xxxx}+\frac{1}{4}u_{ttxx}+av^+={\phi}_{00}+{\epsilon}_1h_1(x,t)\;\;in\;(-\frac{\pi}{2},\frac{\pi}{2}){\times}R,\\{v_{tt}+v_{xxxx}+\frac{1}{4}u_{ttxx}+bu^+={\phi}_{00}+{\epsilon}_2h_2(x,t)\;\;in\;(-\frac{\pi}{2},\frac{\pi}{2}){\times}R,$$ where $u^+={\max}\{u,0\},\;{\epsilon}_1,\;{\epsilon}_2$ are small number and $h_1(x,t)$, $h_2(x,t)$ are bounded, ${\pi}$-periodic in t and even in x and t and ${\parallel} h_1{\parallel}={\parallel} h_2{\parallel}=1$. We first show that the system has a positive solution, and then prove the uniqueness by the contraction mapping principle on a Banach space

  • PDF

EXISTENCE OF THE POSITIVE SOLUTION FOR THE NONLINEAR SYSTEM OF SUSPENSION BRIDGE EQUATIONS

  • Jung, Tacksun;Choi, Q-Heung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.3
    • /
    • pp.339-345
    • /
    • 2008
  • We prove the existence of the positive solution for the nonlinear system of suspension bridge equations with Dirichlet boundary condition and periodic condition $$\{u_{tt}+u_{xxxx}+av^+=1+{\epsilon}_1h_1(x,t)\text{ in }(-\frac{\pi}{2},\frac{\pi}{2}){\times}R,\\v_{tt}+v_{xxxx}+bu^+=1+{\epsilon}_2h_2(x,t)\text{ in }(-\frac{\pi}{2},\frac{\pi}{2}){\times}R,$$ where $u^+={\max}\{u,0\},\;{\epsilon}_1,\;{\epsilon}_2$ are small numbers and $h_1(x,t)$, $h_2(x,t)$ are bounded, ${\pi}$-periodic in t and even in x and t and ${\parallel}h_1{\parallel}={\parallel}h_2{\parallel}=1$.

  • PDF

EXISTENCE OF POSITIVE PERIODIC SOLUTIONS OF FIRST-ORDER NEUTRAL DIFFERENTIAL EQUATIONS

  • Rezaiguia, Ali;Ardjouni, Abdelouaheb;Djoudi, Ahcene
    • Honam Mathematical Journal
    • /
    • v.40 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • We use Krasnoselskii's fixed point theorem to show that the neutral differential equation $$\frac{d}{dt}[x(t)-a(t)x(\tau(t))]+p(t)x(t)+q(t)x(\tau(t))=0,\;t{\geq}t_0$$, has a positive periodic solution. Some examples are also given to illustrate our results. The results obtained here extend the work of Olach [13].

OSCILLATION AND GLOBAL ATTRACTIVITY IN A PERIODIC DELAY HEMATOPOIESIS MODE

  • Saker, S.H.
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.287-300
    • /
    • 2003
  • In this paper we shall consider the nonlinear delay differential equation (equation omitted) where m is a positive integer, ${\beta}$(t) and $\delta$(t) are positive periodic functions of period $\omega$. In the nondelay case we shall show that (*) has a unique positive periodic solution (equation omitted), and show that (equation omitted) is a global attractor all other positive solutions. In the delay case we shall present sufficient conditions for the oscillation of all positive solutions of (*) about (equation omitted), and establish sufficient conditions for the global attractivity of (equation omitted). Our results extend and improve the well known results in the autonomous case.

TRIPLE SOLUTIONS FOR THREE-ORDER PERIODIC BOUNDARY VALUE PROBLEMS WITH SIGN CHANGING NONLINEARITY

  • Tan, Huixuan;Feng, Hanying;Feng, Xingfang;Du, Yatao
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.75-82
    • /
    • 2014
  • In this paper, we consider the periodic boundary value problem with sign changing nonlinearity $$u^{{\prime}{\prime}{\prime}}+{\rho}^3u=f(t,u),\;t{\in}[0,2{\pi}]$$, subject to the boundary value conditions: $$u^{(i)}(0)=u^{(i)}(2{\pi}),\;i=0,1,2$$, where ${\rho}{\in}(o,{\frac{1}{\sqrt{3}}})$ is a positive constant and f(t, u) is a continuous function. Using Leggett-Williams fixed point theorem, we provide sufficient conditions for the existence of at least three positive solutions to the above boundary value problem. The interesting point is the nonlinear term f may change sign.

THE STUDY OF THE SYSTEM OF NONLINEAR WAVE EQUATIONS

  • Jung, Tacksun;Choi, Q-Heung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.261-267
    • /
    • 2007
  • We show the existence of the positive solution for the system of the following nonlinear wave equations with Dirichlet boundary conditions $$u_{tt}-u_{xx}+av^+=s{\phi}_{00}+f$$, $$v_{tt}-v_{xx}+bu^+=t{\phi}_{00}+g$$, $$u({\pm}\frac{\pi}{2},t)=v({\pm}\frac{\pi}{2},t)=0$$, where $u_+=max\{u,0\}$, s, $t{\in}R$, ${\phi}_{00}$ is the eigenfunction corresponding to the positive eigenvalue ${\lambda}_{00}=1$ of the eigenvalue problem $u_{tt}-u_{xx}={\lambda}_{mn}u$ with $u({\pm}\frac{\pi}{2},t)=0$, $u(x,t+{\pi})=u(x,t)=u(-x,t)=u(x,-t)$ and f, g are ${\pi}$-periodic, even in x and t and bounded functions in $[-\frac{\pi}{2},\frac{\pi}{2}]{\times}[-\frac{\pi}{2},\frac{\pi}{2}]$ with $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}f{\phi}_{00}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}g{\phi}_{00}=0$.

  • PDF

PERIODICITY AND POSITIVITY IN NEUTRAL NONLINEAR LEVIN-NOHEL INTEGRO-DIFFERENTIAL EQUATIONS

  • Bessioud, Karima;Ardjouni, Abdelouaheb;Djoudi, Ahcene
    • Honam Mathematical Journal
    • /
    • v.42 no.4
    • /
    • pp.667-680
    • /
    • 2020
  • Our paper deals with the following neutral nonlinear Levin-Nohel integro-differential with variable delay $${\frac{d}{dt}x(t)}+{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_{t-r(t)}}^t}a(t,s)x(s)ds+{\frac{d}{dt}}g(t,x(t-{\tau}(t)))=0.$$ By using Krasnoselskii's fixed point theorem we obtain the existence of periodic and positive periodic solutions and by contraction mapping principle we obtain the existence of a unique periodic solution. An example is given to illustrate this work.