EXISTENCE OF THE POSITIVE SOLUTION FOR THE NONLINEAR SYSTEM OF SUSPENSION BRIDGE EQUATIONS

  • Jung, Tacksun (Department of Mathematics Kunsan National University) ;
  • Choi, Q-Heung (Department of Mathematics Education Inha University)
  • Received : 2008.05.05
  • Accepted : 2008.08.14
  • Published : 2008.09.30

Abstract

We prove the existence of the positive solution for the nonlinear system of suspension bridge equations with Dirichlet boundary condition and periodic condition $$\{u_{tt}+u_{xxxx}+av^+=1+{\epsilon}_1h_1(x,t)\text{ in }(-\frac{\pi}{2},\frac{\pi}{2}){\times}R,\\v_{tt}+v_{xxxx}+bu^+=1+{\epsilon}_2h_2(x,t)\text{ in }(-\frac{\pi}{2},\frac{\pi}{2}){\times}R,$$ where $u^+={\max}\{u,0\},\;{\epsilon}_1,\;{\epsilon}_2$ are small numbers and $h_1(x,t)$, $h_2(x,t)$ are bounded, ${\pi}$-periodic in t and even in x and t and ${\parallel}h_1{\parallel}={\parallel}h_2{\parallel}=1$.

Keywords