Let (R, m) be a 2-dimensional regular local ring with algebraically closed residue field R/m. Let K be the quotient field of R and $\upsilon$ be a prime divisor of R, i.e., a valuation of K which is birationally dominating R and residually transcendental over R. Zariski showed that there are finitely many simple $\upsilon$-ideals $m\;=\;P_0\;{\supset}\;P_1\;{\supset}\;{\cdots}\;{\supset}\;P_t\;=\;P$ and all the other $\upsilon$-ideals are uniquely factored into a product of those simple ones [17]. Lipman further showed that the predecessor of the smallest simple $\upsilon$-ideal P is either simple or the product of two simple $\upsilon$-ideals. The simple integrally closed ideal P is said to be free for the former and satellite for the later. In this paper we describe the sequence of simple $\upsilon$-ideals when P is satellite of order 3 in terms of the invariant $b_{\upsilon}\;=\;|\upsilon(x)\;-\;\upsilon(y)|$, where $\upsilon$ is the prime divisor associated to P and m = (x, y). Denote $b_{\upsilon}$ by b and let b = 3k + 1 for k = 0, 1, 2. Let $n_i$ be the number of nonmaximal simple $\upsilon$-ideals of order i for i = 1, 2, 3. We show that the numbers $n_{\upsilon}$ = ($n_1$, $n_2$, $n_3$) = (${\lceil}\frac{b+1}{3}{\rceil}$, 1, 1) and that the rank of P is ${\lceil}\frac{b+7}{3}{\rceil}$ = k + 3. We then describe all the $\upsilon$-ideals from m to P as products of those simple $\upsilon$-ideals. In particular, we find the conductor ideal and the $\upsilon$-predecessor of the given ideal P in cases of b = 1, 2 and for b = 3k + 1, 3k + 2, 3k for $k\;{\geq}\;1$. We also find the value semigroup $\upsilon(R)$ of a satellite simple valuation ideal P of order 3 in terms of $b_{\upsilon}$.
Purpose: This research aimed at exploring the functions of consumers' perceiving approach and avoidance roles and their feeling anger and disgust in the effect of the two types of self-discrepancy at social identity such as the ideal self-discrepancy and the ought self-discrepancy on within-self domain versus across-self domain consumption. Research design, data, and methodology - This study divided the self-discrepancy group into the ideal self-discrepancy and the ought self-discrepancy group as experimental groups for empirical study. Self-discrepancy type between-subjects design was used to develop two types of questionnaire according to the type of experimental groups. The platform, 'questionnaire stars' of 'WeChat' in China was used to collect 103 data from the ideal self-discrepancy group and 102 from the ought self-discrepancy group for empirical study. T-test and the structural equation model in Amos 21 were used to verify hypotheses developed through theoretical review. Results - First, ideal self-discrepancy positively affected the role-approaching goal and anger. Second, ought self-discrepancy positively affected the role-avoiding goal and disgust. Third, the role-approaching goal and anger positively influenced on the within- versus across- domain consumption. Fourth, the disgust negatively influenced on the within- versus across- domain consumption, however the role-avoiding goal did not influence on the consumption. Fifth, there was the mediation roles of anger (disgust) in the effects of ideal (ought) self-discrepancy on the consumption. Conclusions - When consumers feel anger at the ideal self- discrepancy induced by in-group, it is necessary for the marketers to promote their product brand used by the in-group. They should develop and advertise the messages priming the ideal self-discrepancy and the anger to increase the intent to purchase or use their product brand when the in-group members have used the brand by relating the brand to their social identity concerned with the ideal self-discrepancy. However, marketers should help consumers feel disgust by developing and advertising the messages expressing the ought self-discrepancy to lead the consumers to the place of purchasing or using their product brand when the members have used the brand based on keeping the consistence between the brand and other social identity not related to the ought self-discrepancy.
We study cyclic codes of length n over 𝔽2t. Cyclic codes can be viewed as ideals in 𝓡n = 𝔽2t [x]/(xn − 1). It is known that there is a unique generating idempotent for each ideal. Let e(x) ∈ 𝓡n. If t = 1 or t = 2, then there is a necessary and sufficient condition that e(x) is an idempotent. But there is no known similar result for t ≥ 3. In this paper we give an answer for this problem.
The purpose of this study was to compare ideal clothing and actual clothing behavior between Korean and Japanese college students. 185 Korean students and 91 Japanese students were used into data analysis from October to December. 2000. The age range was 18 to 28 years. The results were as followed. 1) Japanese students wanted to wear fitted clothing styles with revealing the body, while Koreans wanted to wear not only fitted styles but also relaxed and coved body styles. 2) Korean students wore more loose styles and fitted upper styles and pants than Japanese students. On the other hand, Japanese students wore fitted clothing styles and skirt. 3) Japanese students showed higher correlation between ideal clothing styles and actual clothing styles than Koreans. This means that although Koreans want to wear ideal styles, they don't wear those styles much. 4) Overweight students tended to avoid wearing fitted and revealed body styles, pursuing more loose and coved body styles. This tendency showed stronger to Koreans than Japanese students.
In this paper we study the structure of closed weakly dense ideals in Privalov spaces $N^p$ (1 < p < $\infty$) of holomorphic functions on the disk $\mathbb{D}$ : |z| < 1. The space $N^p$ with the topology given by Stoll's metric [21] becomes an F-algebra. N. Mochizuki [16] proved that a closed ideal in $N^p$ is a principal ideal generated by an inner function. Consequently, a closed subspace E of $N^p$ is invariant under multiplication by z if and only if it has the form $IN^p$ for some inner function I. We prove that if $\cal{M}$ is a closed ideal in $N^p$ that is dense in the weak topology of $N^p$, then $\cal{M}$ is generated by a singular inner function. On the other hand, if $S_{\mu}$ is a singular inner function whose associated singular measure $\mu$ has the modulus of continuity $O(t^{(p-1)/p})$, then we prove that the ideal $S_{\mu}N^p$ is weakly dense in $N^p$. Consequently, for such singular inner function $S_{\mu}$, the quotient space $N^p/S_{\mu}N^p$ is an F-space with trivial dual, and hence $N^p$ does not have the separation property.
Ever since the ideal forming theory has been developed for process design purposes, application has been limited to sheet forming and, fur bulk forming, to two-dimensional steady flow. Here, application for the non-steady case was performed under the plane-strain condition based on the theory previously developed. In the ideal flow, material elements deform following the minimum plastic work path (or mostly proportional true strain path) so that the ideal plane-stram flow can be effectively described using the two-dimensional orthogonal convective coordinate system. Besides kinematics, fur a prescribed final part shape, schemes to optimize a preform shape out of a class of initial configurations and also to define the evolution of shapes and boundary tractions were developed. Discussions include the two problematic issues on internal tractions and the non-monotonous straining. For demonstration purposes, numerical calculations were made for a bulk part under forging.
Let I be an ideal in a Gorenstein local ring A with the maximal ideal m. Then we say that I is an equimultiple good ideal in A, if I contains a reduction Q = ( $a_1$, $a_2$,ㆍㆍㆍ, $a_{s}$ ) generated by s elements in A and G(I) =(equation omitted)$_{n 0}$$I^{n}$ / $I^{n+1}$ of I is a Gorenstein ring with a(G(I)) = 1 - s, where s = h $t_{A}$ I and a(G(I)) denotes the a-invariant of G(I). Let $X_{A}$$^{s}$ denote the set of equimultiple good ideals I in A with h $t_{A}$ I = s, R(I) = A [It] be the Rees algebra of I, and $K_{R(I)}$ denote the canonical module of R(I). Let a I such that $I^{n+l}$ = a $I^{n}$ for some n$\geq$0 and $\mu$$_{A}$(I)$\geq$2, where $\mu$$_{A}$(I) denotes the number of elements in a minimal system of generators of I. Assume that A/I is a Cohen-Macaulay ring. We show that the following conditions are equivalent. (1) $K_{R(I)}$(equation omitted)R(I)+as graded R(I)-modules. (2) $I^2$ = aI and aA : I$\in$$X^1$$_{A}$._{A}$./.
Let A be Noetherian ring, a= (${\tau}_1..., \tau_n$ an ideal of A and $C_{A}$ be category of A-modules and A-homomorphisms. We show that the connected left sequences of covariant functors ${limH_i(K.(t^t,-))}_{i\geq0}$ and ${lim{{Tor^A}_i}(\frac{A}{a^f}-)}_{i\geq0}$ are isomorphic from $C_A$ to itself, where $\tau^t\;=\;{{\tau_^t}_1$, ㆍㆍㆍ${\tau^t}_n$.
We introduce Lipschitz algebras of differentiable functions of a perfect compact plane set X and extend the definition to Lipschitz algebras of infinitely differentiable functions of X. Then we define the subalgebras generated by polynomials, rational functions, and analytic functions in some neighbourhood of X, and determine the maximal ideal spaces of some of these algebras. We investigate the polynomial and rational approximation problems on certain compact sets X.
Let R be a ring, and let $\Psi$(R) be the ideal generated by the set {x $\in$R | 1 + sxt $\in$ R is unit-regular for all s, t $\in$ R}. We show that $\Psi$(R) has "radical-like" property. It is proven that $\Psi$(R) has stable range one. Thus, diagonal reduction of matrices over such ideal is reduced.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.