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ON THE IDEMPOTENTS OF CYCLIC CODES OVER F2t

Sunghyu Han

Abstract. We study cyclic codes of length n over F2t . Cyclic codes can be viewed
as ideals in Rn = F2t [x]/(xn − 1). It is known that there is a unique generating
idempotent for each ideal. Let e(x) ∈ Rn. If t = 1 or t = 2, then there is a necessary
and sufficient condition that e(x) is an idempotent. But there is no known similar
result for t ≥ 3. In this paper we give an answer for this problem.

1. Introduction

There are many interesting classes of codes in coding theory. Among them, cyclic
codes are very important. Cyclic codes contain Hamming codes, Golay codes, and
Reed-Solomon codes. E. Prange started the study of cyclic codes with two 1957 and
1959 AFCRL reports. In 1961, W. W. Peterson published a comprehensive book
about cyclic codes [2]. This book was expanded by Peterson and E. J. Weldon [3].

Cyclic codes have a very nice algebraic structure, i.e., cyclic codes over finite fields
are equivalent to ideals in an appropriate ring. Therefore the study of cyclic codes is
the study of ideals. There are two important generators for cyclic codes. One is the
generator polynomial and the other is the generating idempotent.

This paper is about the generating idempotent. The generating idempotent for
cyclic codes over F2 are completely determined. For cyclic codes over F4, a similar
result is found [1]. But further results are not known. In this paper, we study the
generating idempotents for cyclic codes over F2t (t ≥ 1) and completely determine
the generating idempotents for finite fields F2t for all t ≥ 1.

This paper is organized as follows. In Section 2, we provide basic facts for cyclic
codes and known results about the generating idempotents of cyclic codes over F2

and F4. In Section 3, we describe our main results which are about the generating
idempotents of cyclic codes over F2t (t ≥ 1). In Section 4, we summarize this paper
and give some future works.
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2. Preliminaries

In this section, we give well-known facts about cyclic codes over finite fields [1]. Let
Fq be a finite field with q elements. A linear [n, k] code C is defined by a k-dimensional
subspace of n-dimensional vector space (Fq)n. We call n the code length of C and k the
dimension of C, and an element of C is called a codeword. Let c = (c0, c1, c2, . . . , cn−1)
be a codeword of C. We consider cyclic shift of c, c′ = (cn−1, c0, c1, . . . , cn−2). We call
C a cyclic code if c′ ∈ C for all c ∈ C.

Let C be a cyclic code of length n over Fq. We assume that n and q are rel-
atively prime. Let Rn = Fq[x]/(xn − 1). Then we can identify a codeword c =
(c0, c1, c2, . . . , cn−1) of C with an element c(x) + (xn − 1) ∈ Rn, where c(x) = c0 +
c1x+ c2x

2 + · · ·+ cn−1x
n−1. It is known that the set of all such c(x) + (xn − 1) is an

ideal of Rn. In other words, the set

A = {c(x) + (xn − 1) | c ∈ C}

is an ideal of Rn. Conversely if A is an ideal of Rn, then we can construct a cyclic
code C,

C = {c | c(x) + (xn − 1) ∈ A}.
From now on, we identify c = (c0, c1, c2, . . . , cn−1) with c(x) + (xn − 1), where c(x) =
c0+c1x+c2x

2+· · ·+cn−1xn−1. For notation simplicity, we write c(x) for c(x)+(xn−1)
if there is no confusion. Therefore we can say that C is a cyclic code of length n over
Fq if and only if C is an ideal in Rn = Fq[x]/(xn − 1).

It is known that Rn is a principal ring. In other words, every ideal of Rn is
principal. Let C be an ideal in Rn. Then there is f(x) ∈ Rn such that C = 〈f(x)〉,
i.e., C is generated by f(x). Let C be a nonzero cyclic code in Rn. Then it is known
that there is a unique monic polynomial of minimum degree in C. Let g(x) be the
polynomial. Then it is also known that C = 〈g(x)〉, g(x) | (xn−1), the dimension of C
is n− deg(g(x)), and {g(x), xg(x), . . . , xn−deg(g(x))−1g(x)} is a basis for C. Conversely,
let g(x) be a monic polynomial such that g(x) | (xn − 1) and C = 〈g(x)〉. Then g(x)
is the monic polynomial of minimum degree in C. We call the polynomial g(x) the
generator polynomial of the cyclic code C. We define the generator polynomial of the
zero cyclic code {0} to be xn − 1. From the discussion above, we know that there
is one-to-one correspondence between all the cyclic codes in Rn and all the monic
divisors of xn − 1. By this correspondence, we have the following. Let m be the
number of irreducible factors of xn − 1 in Fq[x]. Then the number of cyclic codes in
Rn is 2m.

Therefore it is important to find irreducible factors of xn − 1 in Fq[x]. We define
ordn(q) by the order q modulo n, i.e., the smallest positive integer a such that qa ≡ 1
(mod n). Let t = ordn(q). Then Fqt is the splitting field of xn− 1 over Fq. Let γ be a

primitive element in Fqt and let α = γ(q
t−1)/n. Then α is a primitive nth root of unity

in Fqt and

xn − 1 =
n−1∏
i=0

(x− αi).

We define q-cyclotomic coset of s modulo n by

Cq
s = {s, sq, sq2, . . . , sqr−1} (mod n),
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where 0 ≤ s < n and r is the smallest positive integer such that s ≡ sqr (mod n).
We use Cs instead of Cq

s if q is clear from the context. It follows that Cq
s is the orbit

of the permutation i→ iq (mod n) that contains s. The distinct q-cyclotomic cosets
modulo n partition the set of integers {0, 1, 2, . . . , n− 1}. We define S(q) as a set of
representatives of q-cyclotomic cosets modulo n. Let s be an integer with 0 ≤ s < n.
Then the minimal polynomial of αs over Fq is

Mαs(x) =
∏
i∈Cs

(x− αi)

and
xn − 1 =

∏
s∈S(q)

Mαs(x)

is the factorization of xn − 1 into irreducible factors over Fq.
Let e(x) be an element of Rn. If e(x)2 = e(x), then e(x) is called an idempo-

tent. Let C be a cyclic code of length n over Fq. Then there is a unique idempotent
in Rn which generate C. We call the idempotent e(x) the generating idempotent
of C. Let C be an [n, k] cyclic code with the generating idempotent e(x). Then
{e(x), xe(x), . . . , xk−1e(x)} is a basis for C. For a cyclic code C, the generator poly-
nomial g(x) and the generating idempotent are closely related. We can calculate the
other if one of two is known. Suppose that we know the generator polynomial g(x)
for a cyclic code C. Let h(x) = (xn − 1)/g(x). By the Euclidean Algorithm, we have
a(x) and b(x) such that 1 = a(x)g(x) + b(x)h(x) in Fq[x]. Then a(x)g(x) in Rn is the
generating idempotent e(x) of C. Conversely, suppose that we know the generating
idempotent e(x) of C. Then gcd(e(x), xn − 1) in Fq[x] is the generator polynomial
g(x) of C.

The generating idempotent of a cyclic code and the q-cyclotomic cosets are closely
related. Let C be a cyclic code of length n over Fq with the generating idempotent
e(x). Then

e(x) =
∑
j∈S(q)

aj
∑
i∈Cj

xi,

where aj ∈ Fq. If q = 2, then every element of Rn of the form

(1) e(x) =
∑
j∈S(2)

aj
∑
i∈Cj

xi, (aj ∈ F2)

is an idempotent of Rn. Therefore, for q = 2 case, the generating idempotents of all
the cyclic codes in Rn are completely determined by the 2-cyclotomic cosets modulo
n.

Example 2.1. Let q = 2 and n = 7. Then the 2-cyclotomic cosets modulo 7 are
C0 = {0}, C1 = {1, 2, 4}, and C3 = {3, 6, 5}. Therefore S(2) = {0, 1, 3}. Let C be a
cyclic code of length 7 over F2 with the generating idempotent e(x). Then

(2) e(x) =
∑
j∈S(2)

aj
∑
i∈Cj

xi,

where aj ∈ F2. By equation (2), there are eight cyclic codes of length 7 over F2. In
Table 1, we give the eight idempotents. In the table, dim, gi(x), and ei(x) means that
the dimension, the generator polynomial, and the generating idempotent for a cyclic
code of length 7 over F2, respectively.
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Table 1. Idempotents of cyclic codes of length 7 over F2

i dim gi(x) ei(x)
0 0 1 + x7 0
1 1 1 + x+ x2 + · · ·+ x6 1 + x+ x2 + · · ·+ x6

2 3 1 + x2 + x3 + x4 1 + x3 + x5 + x6

3 3 1 + x+ x2 + x4 1 + x+ x2 + x4

4 4 1 + x+ x3 x+ x2 + x4

5 4 1 + x2 + x3 x3 + x5 + x6

6 6 1 + x x+ x2 + · · ·+ x6

7 7 1 1

Table 2. Idempotents of cyclic codes of length 11 over F3

i dim gi(x) ei(x)
0 0 −1 + x11 0
1 1 1 + x+ x2 + · · ·+ x10 −1− x− x2 − · · · − x10
2 3 1− x− x2 − x3 + x4 + x6 1 + x+ x3 + x4 + x5 + x9

3 3 1 + x2 − x3 − x4 − x5 + x6 1 + x2 + x6 + x7 + x8 + x10

4 4 −1 + x2 − x3 + x4 + x5 −x2 − x6 − x7 − x8 − x10
5 4 −1− x+ x2 − x3 + x5 −x− x3 − x4 − x5 − x9
6 6 −1 + x −1 + x+ x2 + · · ·+ x10

7 7 1 1

For other cases, i.e., q 6= 2 cases, we know that the idempotents are the following
form:

(3) e(x) =
∑
j∈S(q)

aj
∑
i∈Cj

xi,

where aj ∈ Fq. But the converse is not always true. In other words, the expression
e(x) in equation (3) is not always an idempotent.

Example 2.2. Let q = 3 and n = 11. Then the 3-cyclotomic cosets modulo 11
are C0 = {0}, C1 = {1, 3, 4, 5, 9}, and C2 = {2, 6, 7, 8, 10}. Therefore S(3) = {0, 1, 2}.
Let C be a cyclic code of length 11 over F3 with generating idempotent e(x). Then

(4) e(x) =
∑
j∈S(3)

aj
∑
i∈Cj

xi,

where aj ∈ F3. By equation (4), there are 27 possibilities for e(x). In fact, there
are exactly eight cyclic codes of length 11 over F3. Therefore all the expressions of
equation (4) are not idempotents. In Table 2, we give the eight idempotents.

For q = 4 case, there is a similar result as q = 2 case in [1, Section 4.3]. Let

(5) S(4) = K ∪ L1 ∪ L2,

where K,L1, and L2 are pairwise disjoint. K consists of distinct representatives k,
where Ck = C2k. L1 and L2 are chosen so that if k ∈ L1 ∪ L2, Ck 6= C2k; furthermore
L2 = {2k | k ∈ L1}. Then e(x) is an idempotent in Rn if and only if

(6) e(x) =
∑
j∈K

aj
∑
i∈Cj

xi +
∑
j∈L1

(bj
∑
i∈Cj

xi + b2j
∑
i∈Cj

x2i),
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where aj ∈ F2 and bj ∈ F4.

Example 2.3. Let q = 4 and n = 7. Then the 4-cyclotomic cosets modulo 7
are C0 = {0}, C1 = {1, 4, 2}, and C3 = {3, 5, 6}. Therefore K = {0, 1, 3} and
L1 = L2 = ∅. Let C be a cyclic code of length 7 over F4 with generating idempotent
e(x). Then

e(x) =
∑
j∈K

aj
∑
i∈Cj

xi,

where aj ∈ F2. Therefore, there are exactly eight cyclic codes of length 7 over F4.

Example 2.4. Let q = 4 and n = 21. Then the 4-cyclotomic cosets modulo 21
are C0 = {0}, C1 = {1, 4, 16}, C2 = {2, 8, 11}, C3 = {3, 12, 6}, C5 = {5, 20, 17},
C7 = {7}, C9 = {9, 15, 18}, C10 = {10, 19, 13}, C14 = {14}. Therefore, K = {0, 3, 9},
L1 = {1, 5, 7}, L2 = {2, 10, 14}. Let C be a cyclic code of length 7 over F4 with
generating idempotent e(x). Then

e(x) =
∑
j∈K

aj
∑
i∈Cj

xi +
∑
j∈L1

(bj
∑
i∈Cj

xi + b2j
∑
i∈Cj

x2i),

where aj ∈ F2 and bj ∈ F4. Therefore, there are exactly 29(= 23 × 43) cyclic codes of
length 21 over F4.

3. Main results

In this section, we continue the study of the generating idempotents of cyclic codes
over F2t , (t ≥ 1). We start with the following theorem.

Theorem 3.1. Let n be an odd positive integer and t ≥ 1. If |C2
s | = r, then

(7) C2
s = C2t

s ∪ C2t

2s ∪ C2t

22s ∪ · · · ∪ C2t

2d−1s,

where d = gcd(t, r). Furthermore, we have

|C2t

s | = |C2t

2s| = |C2t

22s| = · · · = |C2t

2d−1s| =
r

d
,

C2t

2is ∩ C2t

2js = ∅, (0 ≤ i < j ≤ d− 1),

and

(8) C2t

2ds = C2t

s .

Proof. Let t = dt1 and r = dr1. Note that gcd(t1, r1) = 1. First we prove that
|C2t

s | = r
d

= r1. Let |C2t

s | = m. Then we have

s ≡ s · (2t)m = s · 2tm (mod n).

Since |C2
s | = r, we have r | tm. Therefore dr1 | dt1m and r1 | m. Since |C2

s | = r, we
have the following equation.

s · (2t)r1 = s · 2dt1r1 = s · (2r)t1 ≡ s (mod n).

Since |C2t

s | = m, we have m | r1. Therefore m = r1 and |C2t

s | = r
d
.

Second we prove that |C2t

2is| =
r
d

for all i = 0, 1, 2, . . . , d− 1. Let |C2t

2is| = m′. Then
we have the following equivalent statements.

2is ≡ 2is · (2t)m′ (mod n)⇔ s ≡ s · (2t)m′ (mod n).
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Therefore |C2t

2is| =
r
d

and we have

(9) |C2t

s | = |C2t

2s| = |C2t

22s| = · · · = |C2t

2d−1s| =
r

d
.

Third we prove that

C2
s ⊆

(
C2t

s ∪ C2t

2s ∪ C2t

22s ∪ · · · ∪ C2t

2d−1s

)
.

Choose an element s · 2i in C2
s for some i, (0 ≤ i < r). By division algorithm, there

are a and b such that i = ad + b, (0 ≤ b < d). Since d = gcd(t, r), there are e and f
such that

(10) d = et+ fr.

Therefore

s · 2i = s · 2ad+b

= s · 2a(et+fr)+b

= s · (2r)af · 2b · (2t)ae

≡ s · 2b · (2t)ae (mod n).

So, s · 2i ∈ C2t

2bs
. This leads to

(11) C2
s ⊆

(
C2t

s ∪ C2t

2s ∪ C2t

22s ∪ · · · ∪ C2t

2d−1s

)
.

Since |C2
s | = r, by Eqn. (9) and Eqn. (11), we have

C2t

2is ∩ C2t

2js = ∅, (0 ≤ i < j ≤ d− 1).

and

C2
s = C2t

s ∪ C2t

2s ∪ C2t

22s ∪ · · · ∪ C2t

2d−1s.

Finally, we prove that C2t

2ds
= C2t

s . Using Eqn. (10) and |C2
s | = r we have

s · 2d = s · 2et+fr

= s · (2r)f (2t)e

≡ s · (2t)e (mod n).

Therefore s · 2d ∈ C2t

s . This leads to C2t

2ds
= C2t

s and completes the proof.

Example 3.2. We give an example for Theorem 3.1. Let n = 21, t = 9, and s = 1.
Then C2

1 = {1, 2, 4, 8, 16, 11}. Therefore r = 6, d = gcd(9, 6) = 3, C29

1 = {1, 8},
C29

2 = {2, 16}, C29

4 = {4, 11}, and

C2
1 = C29

1 ∪ C29

2 ∪ C29

4 .

Theorem 3.3. Let S(2) be a fixed set of representatives of 2-cyclotomic cosets
modulo n. Then we can describe S(2t), a set of representatives of 2t-cyclotomic cosets
modulo n, by the following.

S(2t) =
⋃
d|t

( d−1⋃
k=0

Md
k

)
,

where

(12) Md
k = {2k · s | s ∈ S(2), d = gcd(t, |C2

s |)}, (k = 0, 1, 2, . . . , d− 1).
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Proof. By Eqn. (7) we have

S(2t) = {s, 2s, 22s, . . . , 2d−1s | s ∈ S(2), d = gcd(t, |C2
s |)}.

From this, the result follows.

Note that if t = 1 in Theorem 3.3, then

(13) S(2t) = M1
0 = S(2).

If if t = 2 in Theorem 3.3, then

S(2t) = S(4) = M1
0 ∪ (M2

0 ∪M2
1 ).

By Eqn. (8), we have C4
2s = C4

s for s ∈M1
0 . By Eqn. (12), we have

M2
0 = {s | s ∈ S(2), 2 = gcd(2, |C2

s |)}, M2
1 = {2s | s ∈ S(2), 2 = gcd(2, |C2

s |)}.
Therefore for t = 2 case, M1

0 ,M
2
0 , and M2

1 correspond to K,L1, and L2 in Eqn. (5)
respectively. In other words, we have

(14) M1
0 = K, M2

0 = L1, M
2
1 = L2.

Now we give our main result.

Theorem 3.4. Let q = 2t (t ≥ 1), Cj be the q-cyclotomic coset of j modulo n,
and Rn = F2t [x]/(xn − 1). Then e(x) is an idempotent in Rn if and only if
(15)

e(x) =
∑
d|t

∑
j∈Md

0

(
md
j

∑
i∈Cj

xi+(md
j )

2
∑
i∈Cj

x2i+(md
j )

22
∑
i∈Cj

x2
2i+· · ·+(md

j )
2d−1

∑
i∈Cj

x2
d−1i
)
,

where md
j ∈ F2d .

Proof. Let

e(x) =
∑
d|t

∑
j∈Md

0

(
md
j

∑
i∈Cj

xi+(md
j )

2
∑
i∈Cj

x2i+(md
j )

22
∑
i∈Cj

x2
2i+· · ·+(md

j )
2d−1

∑
i∈Cj

x2
d−1i
)
,

where md
j ∈ F2d . Then,

e(x)2 =
∑
d|t

∑
j∈Md

0

(
(md

j )
2
∑
i∈Cj

x2i+(md
j )

22
∑
i∈Cj

x2
2i+· · ·+(md

j )
2d−1

∑
i∈Cj

x2
d−1i+(md

j )
2d
∑
i∈Cj

x2
di
)
.

Since md
j ∈ F2d , we have (md

j )
2d = md

j . By Eqn. (8), we know C2dj = Cj. Therefore

we have
∑

i∈Cj
x2

di =
∑

i∈C
2dj
xi =

∑
i∈Cj

xi and (md
j )

2d
∑

i∈Cj
x2

di = md
j

∑
i∈Cj

xi.

This leads to e(x)2 = e(x) and proves that e(x) is an idempotent in Rn.
For the converse statement, let m be the number of 2t-cyclotomic cosets modulo

n. Since

S(2t) =
⋃
d|t

( d−1⋃
k=0

Md
k

)
,

we have

m =
∑
d|t

d−1∑
k=0

|Md
k |

Since
|Md

0 | = |Md
1 | = · · · = |Md

d−1|,
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we have
m =

∑
d|t

d · |Md
0 |.

We know that the number of cyclic codes in Rn is 2m. Therefore the number of
idempotents in Rn is 2m. On the other hand, the number of all possible different
expressions in Eqn.(15) is ∏

d|t

(2d)|M
d
0 | = 2

∑
d|t d·|Md

0 | = 2m.

This completes the proof.

Note that if t = 1 in Theorem 3.4, then Eqn. (15) becomes

e(x) =
∑
j∈M1

0

(
m1
j

∑
i∈Cj

xi
)
, (m1

j ∈ F2).

By Eqn.(13), we have M1
0 = S(2). Therefore

e(x) =
∑
j∈S(2)

(
m1
j

∑
i∈Cj

xi
)
, (m1

j ∈ F2).

This equals to Eqn. (1). Therefore Theorem 3.4 agrees with the known result for t = 1
case. If t = 2 in Theorem 3.4, then Eqn. (15) becomes

e(x) =
∑
j∈M1

0

(
m1
j

∑
i∈Cj

xi
)

+
∑
j∈M2

0

(
m2
j

∑
i∈Cj

xi + (m2
j)

2
∑
i∈Cj

x2i
)
,

where m1
j ∈ F2 and m2

j ∈ F4. By Eqn. (14) we have M1
0 = K, M2

0 = L1, M
2
1 = L2.

Therefore

e(x) =
∑
j∈K

(
m1
j

∑
i∈Cj

xi
)

+
∑
j∈L1

(
m2
j

∑
i∈Cj

xi + (m2
j)

2
∑
i∈Cj

x2i
)
.

This equals to Eqn. (6). Therefore Theorem 3.4 agrees with the known result for t = 2
case.

In the following, we give examples of Theorem 3.3 and Theorem 3.4 for t ≥ 3.

Example 3.5. Let t = 3 and n = 15. Then q = 8 and we have the following:

1. C0 = {0}, C1 = {1, 8, 4, 2}, C3 = {3, 9, 12, 6}, C5 = {5, 10}, C7 = {7, 11, 13, 14}.
2. S(8) = M1

0 ∪ (M3
0 ∪M3

1 ∪M3
2 ), where M1

0 = {0, 1, 3, 5, 7}, M3
0 = M3

1 = M3
2 = ∅.

Then e(x) is an idempotent in Rn = F8[x]/(x15 − 1) if and only if

e(x) =
∑
j∈M1

0

aj
∑
i∈Cj

xi,

where aj ∈ F2. Therefore, there are exactly 25 cyclic codes of length 15 over F8.

Example 3.6. Let t = 3 and n = 21. Then q = 8 and we have the following:

1. C0 = {0}, C3 = {3}, C6 = {6}, C9 = {9}, C12 = {12}, C15 = {15}, C18 = {18},
C1 = {1, 8}, C2 = {2, 16}, C4 = {4, 11}, C5 = {5, 19}, C7 = {7, 14}, C10 =
{10, 17}, C13 = {13, 20}.

2. S(8) = M1
0 ∪(M3

0 ∪M3
1 ∪M3

2 ), where M1
0 = {0, 3, 6, 9, 12, 15, 18, 7}, M3

0 = {1, 5},
M3

1 = {2, 10}, M3
2 = {4, 20}.
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Then e(x) is an idempotent in Rn = F8[x]/(x21 − 1) if and only if

e(x) =
∑
j∈M1

0

aj
∑
i∈Cj

xi +
∑
j∈M3

0

(bj
∑
i∈Cj

xi + b2j
∑
i∈Cj

x2i + b4j
∑
i∈Cj

x4i),

where aj ∈ F2, bj ∈ F8. Therefore, there are exactly 214(= (2)8 × (23)2) cyclic codes
of length 21 over F8.

Example 3.7. Let t = 4 and n = 7. Then q = 16 and we have the following:

1. C0 = {0}, C1 = {1, 2, 4}, C3 = {3, 6, 5}.
2. S(16) = M1

0 ∪ (M2
0 ∪ M2

1 ) ∪ (M4
0 ∪ M4

1 ∪ M4
2 ∪ M4

3 ), where M1
0 = {0, 1, 3},

M2
0 = M2

1 = M4
0 = M4

1 = M4
2 = M4

3 = ∅.
Then e(x) is an idempotent in Rn = F16[x]/(x7 − 1) if and only if

e(x) =
∑
j∈M1

0

aj
∑
i∈Cj

xi,

where aj ∈ F2. Therefore, there are exactly 23 cyclic codes of length 7 over F16.

Example 3.8. Let t = 4 and n = 21. Then q = 16 and we have the following:

1. C0 = {0}, C1 = {1, 16, 4}, C2 = {2, 11, 8}, C3 = {3, 6, 12}, C5 = {5, 17, 20},
C7 = {7}, C9 = {9, 18, 15}, C10 = {10, 13, 19}, C14 = {14}.

2. S(16) = M1
0 ∪ (M2

0 ∪ M2
1 ) ∪ (M4

0 ∪ M4
1 ∪ M4

2 ∪ M4
3 ), where M1

0 = {0, 3, 9},
M2

0 = {1, 5, 7}, M2
1 = {2, 10, 14}, M4

0 = M4
1 = M4

2 = M4
3 = ∅.

Then e(x) is an idempotent in Rn = F16[x]/(x21 − 1) if and only if

e(x) =
∑
j∈M1

0

aj
∑
i∈Cj

xi +
∑
j∈M2

0

(bj
∑
i∈Cj

xi + b2j
∑
i∈Cj

x2i),

where aj ∈ F2 and bj ∈ F4. Therefore, there are exactly 29(= (2)3×(22)3) cyclic codes
of length 21 over F16.

Example 3.9. Let t = 4 and n = 15. Then q = 16 and we have the following:

1. Ci = {i}, (i = 0, 1, 2, . . . , 14),
2. S(16) = M1

0 ∪ (M2
0 ∪ M2

1 ) ∪ (M4
0 ∪ M4

1 ∪ M4
2 ∪ M4

3 ), M1
0 = {0}, M2

0 = {5},
M2

1 = {10}, M4
0 = {1, 3, 7}, M4

1 = {2, 6, 14}, M4
2 = {4, 12, 13}, M4

3 = {8, 9, 11}.
Then e(x) is an idempotent in Rn = F16[x]/(x15 − 1) if and only if

e(x) =
∑
j∈M1

0

aj
∑
i∈Cj

xi

+
∑
j∈M2

0

(bj
∑
i∈Cj

xi + b2j
∑
i∈Cj

x2i)

+
∑
j∈M4

0

(fj
∑
i∈Cj

xi + f 2
j

∑
i∈Cj

x2i + f 4
j

∑
i∈Cj

x4i + f 8
j

∑
i∈Cj

x8i),

where aj ∈ F2, bj ∈ F4, and fj ∈ F16. Therefore, there are exactly 215(= (2)× (22)×
(24)3) cyclic codes of length 15 over F16.

Example 3.10. Let t = 5 and n = 21. Then q = 32 and we have the following:

1. C0 = {0}, C1 = {1, 2, 4, 8, 16, 11}, C3 = {3, 6, 12}, C5 = {5, 10, 20, 19, 17, 13},
C7 = {7, 14}, C9 = {9, 18, 15}.
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2. S(32) = M1
0 ∪ (M5

0 ∪M5
1 ∪M5

2 ∪M5
3 ∪M5

4 ), where M1
0 = {0, 1, 3, 5, 7, 9}, M5

0 =
M5

1 = M5
2 = M5

3 = M5
4 = ∅.

Then e(x) is an idempotent in Rn = F32[x]/(x21 − 1) if and only if

e(x) =
∑
j∈M1

0

aj
∑
i∈Cj

xi

where aj ∈ F2. Therefore, there are exactly 26 cyclic codes of length 21 over F32.

Example 3.11. Let t = 6 and n = 21. Then q = 64 and we have the following:

1. Ci = {i}, (i = 0, 1, 2, . . . , 20),
2. S(64) = M1

0∪(M2
0∪M2

1 )∪(M3
0∪M3

1∪M3
2 )∪(M6

0∪M6
1∪M6

2∪M6
3∪M6

4∪M6
5 ), where

M1
0 = {0}, M2

0 = {7}, M2
1 = {14}, M3

0 = {3, 9}, M3
1 = {6, 18}, M3

2 = {12, 15},
M6

0 = {1, 5}, M6
1 = {2, 10}, M6

2 = {4, 20}, M6
3 = {8, 19}, M6

4 = {16, 17},
M6

5 = {11, 13}.
Then e(x) is an idempotent in Rn = F64[x]/(x21 − 1) if and only if

e(x) =
∑
j∈M1

0

aj
∑
i∈Cj

xi

+
∑
j∈N1

(bj
∑
i∈Cj

xi + b2j
∑
i∈Cj

x2i)

+
∑
j∈M1

(fj
∑
i∈Cj

xi + f 2
j

∑
i∈Cj

x2i + f 4
j

∑
i∈Cj

x4i)

+
∑
j∈M2

0

(gj
∑
i∈Cj

xi + g2j
∑
i∈Cj

x2i + g4j
∑
i∈Cj

x4i + g8j
∑
i∈Cj

x8i + g16j
∑
i∈Cj

x16i + g32j
∑
i∈Cj

x32i),

where aj ∈ F2, bj ∈ F4, fj ∈ F8, gj ∈ F64. Therefore, there are exactly 221(=
2× 22 × (23)2 × (26)2) cyclic codes of length 21 over F64.

4. Summary

In this paper, we study the generating idempotents of cyclic codes over finite fields.
For an element e(x) ∈ Rn, (Rn = F2t [x]/(xn − 1)), there is an equivalent condition
that e(x) is an idempotent if t = 1 or t = 2. We extended this result for the case
t ≥ 3 and presented an equivalent condition that e(x) is an idempotent for all t ≥ 1.
For a future work, it is worth to study the same subject for other finite fields or rings.
For example, F3t and Z4 can be possible candidates.
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