• 제목/요약/키워드: Symmetric ring

검색결과 116건 처리시간 0.023초

SOME RESULTS OF SELF MAP NEAR-RINGS

  • Cho, Yong-Uk
    • Journal of applied mathematics & informatics
    • /
    • 제29권1_2호
    • /
    • pp.523-527
    • /
    • 2011
  • In this paper, We initiate a study of zero symmetric and constant parts of near-rings, and then apply these to self map near-rings. Next, we investigate that every near-ring can be embedded into some self map near-ring, and every zero symmetric near-ring can be embedded into some zero symmetric self map near-ring.

GENERALIZED DERIVATIONS IN RING WITH INVOLUTION INVOLVING SYMMETRIC AND SKEW SYMMETRIC ELEMENTS

  • Souad Dakir;Hajar El Mir;Abdellah Mamouni
    • 대한수학회논문집
    • /
    • 제39권1호
    • /
    • pp.1-10
    • /
    • 2024
  • In this paper we will demonstrate some results on a prime ring with involution by introducing two generalized derivations acting on symmetric and skew symmetric elements. This approach allows us to generalize some well known results. Furthermore, we provide examples to show that various restrictions imposed in the hypotheses of our theorems are not superfluous.

ON GENERALIZED SYMMETRIC BI-DERIVATIONS IN PRIME RINGS

  • Ozturk, M. Ali;Sapanci, Mehmet
    • East Asian mathematical journal
    • /
    • 제15권2호
    • /
    • pp.165-176
    • /
    • 1999
  • After the derivation was defined in [19] by Posner a lot of researchers studied the derivations in ring theory in different manners such as in [2], [4], [5], ..., etc. Furthermore, many researches followed the definition of the generalized derivation([3], [6], [7], ..., etc.). Finally, Maksa defined a symmetric bi-derivation and many researches have been done in ring theory by using this definition. In this work, defining a symmetric bi-$\alpha$-derivation, we study the mentioned researches above in the light of this new concept.

  • PDF

SOME STUDIES ON JORDAN (𝛼, 1)* -BIDERIVATION IN RINGS WITH INVOLUTION

  • SK. HASEENA;C. JAYA SUBBA REDDY
    • Journal of Applied and Pure Mathematics
    • /
    • 제6권1_2호
    • /
    • pp.13-20
    • /
    • 2024
  • Let R be a ring with involution. In the present paper, we characterize biadditive mappings which satisfies some functional identities related to symmetric Jordan (𝛼, 1)*-biderivation of prime rings with involution. In particular, we prove that on a 2-torsion free prime ring with involution, every symmetric Jordan triple (𝛼, 1)*-biderivation is a symmetric Jordan (𝛼, 1)*-biderivation.

ON A SPECIAL CLASS OF MATRIX RINGS

  • Arnab Bhattacharjee
    • 대한수학회논문집
    • /
    • 제39권2호
    • /
    • pp.267-278
    • /
    • 2024
  • In this paper, we continue to explore an idea presented in [3] and introduce a new class of matrix rings called staircase matrix rings which has applications in noncommutative ring theory. We show that these rings preserve the notions of reduced, symmetric, reversible, IFP, reflexive, abelian rings, etc.

EXTENSIONS OF EXTENDED SYMMETRIC RINGS

  • Kwak, Tai-Keun
    • 대한수학회보
    • /
    • 제44권4호
    • /
    • pp.777-788
    • /
    • 2007
  • An endomorphism ${\alpha}$ of a ring R is called right(left) symmetric if whenever abc=0 for a, b, c ${\in}$ R, $ac{\alpha}(b)=0({\alpha}(b)ac=0)$. A ring R is called right(left) ${\alpha}-symmetric$ if there exists a right(left) symmetric endomorphism ${\alpha}$ of R. The notion of an ${\alpha}-symmetric$ ring is a generalization of ${\alpha}-rigid$ rings as well as an extension of symmetric rings. We study characterizations of ${\alpha}-symmetric$ rings and their related properties including extensions. The relationship between ${\alpha}-symmetric$ rings and(extended) Armendariz rings is also investigated, consequently several known results relating to ${\alpha}-rigid$ and symmetric rings can be obtained as corollaries of our results.

REVERSIBILITY AND SYMMETRY OVER CENTERS

  • Choi, Kwang-Jin;Kwak, Tai Keun;Lee, Yang
    • 대한수학회지
    • /
    • 제56권3호
    • /
    • pp.723-738
    • /
    • 2019
  • A property of reduced rings is proved in relation with centers, and our argument in this article is spread out based on this. It is also proved that the Wedderburn radical coincides with the set of all nilpotents in symmetric-over-center rings, implying that the Jacobson radical, all nilradicals, and the set of all nilpotents are equal in polynomial rings over symmetric-over-center rings. It is shown that reduced rings are reversible-over-center, and that given reversible-over-center rings, various sorts of reversible-over-center rings can be constructed. The structure of radicals in reversible-over-center and symmetric-over-center rings is also investigated.

ON PRIME AND SEMIPRIME RINGS WITH SYMMETRIC n-DERIVATIONS

  • Park, Kyoo-Hong
    • 충청수학회지
    • /
    • 제22권3호
    • /
    • pp.451-458
    • /
    • 2009
  • Let $n{\geq}2$ be a fixed positive integer and let R be a noncommutative n!-torsion free semiprime ring. Suppose that there exists a symmetric n-derivation $\Delta$ : $R^{n}{\rightarrow}R$ such that the trace of $\Delta$ is centralizing on R. Then the trace is commuting on R. If R is a n!-torsion free prime ring and $\Delta{\neq}0$ under the same condition. Then R is commutative.

  • PDF

RESULTS OF 3-DERIVATIONS AND COMMUTATIVITY FOR PRIME RINGS WITH INVOLUTION INVOLVING SYMMETRIC AND SKEW SYMMETRIC COMPONENTS

  • Hanane Aharssi;Kamal Charrabi;Abdellah Mamouni
    • 대한수학회논문집
    • /
    • 제39권1호
    • /
    • pp.79-91
    • /
    • 2024
  • This article examines the connection between 3-derivations and the commutativity of a prime ring R with an involution * that fulfills particular algebraic identities for symmetric and skew symmetric elements. In practice, certain well-known problems, such as the Herstein problem, have been studied in the setting of three derivations in involuted rings.