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EXTENSIONS OF EXTENDED SYMMETRIC RINGS

Tar KEUN KwAk

ABSTRACT. An endomorphism « of a ring R is called right (left) symmet-
ric if whenever abc = 0 for a,b, ¢ € R, aca(b) = 0 (a(b)ac = 0). A ring R
is called right (left) a-symmetric if there exists a right (left) symmetric
endomorphism a of R. The notion of an a-symmetric ring is a general-
ization of a-rigid rings as well as an extension of symmetric rings. We
study characterizations of a-symmetric rings and their related properties
including extensions. The relationship between a-symmetric rings and
(extended) Armendariz rings is also investigated, consequently several
known results relating to a-rigid and symmetric rings can be obtained as
corollaries of our results.

1. Introduction

Recall that a ring is reduced if it has no nonzero nilpotent elements. Lambek
called a ring R symmetric [13] provided abc = 0 implies acb = 0 for a,b,c € R.
Every reduced ring is symmetric ([16, Lemma 1.1]) but the converse does not
hold by [2, Example IL5]. Cohn called a ring R reversible [5] if ab = 0 implies
ba = 0 for a,b € R. Historically, some of the earliest known results about
reversible rings (although not so called at the time) were due to Habeb [6].
It is obvious that commutative rings are symmetric and symmetric rings are
reversible; but the converses do not hold by [2, Examples 1.5 and I1.5] and [14,
Examples 5 and 7).

Another generalization of a reduced ring is an Armendariz ring. Rege and
Chhawchharia called a ring R Armendariz [15] if whenever any polynomials
f(x) =ao + a1+ -+ ama™, g(z) = bo + b1z + -+ + byz™ € R|z| satisfy
f(z)g(z) = 0, then a;b; = 0 for each i and j. This nomenclature was used by
them since it was Armendariz who initially showed that a reduced ring always
satisfies this condition ([3, Lemma 1]).

For a ring R with a ring endomorphism « : R — R, a skew polynomial ring
(also called an Ore extension of endomorphism type) R[z; a] of R is the ring
obtained by giving the polynomial ring over R with the new multiplication
xr = ar)z for all r € R.
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The Armendariz property of a ring was extended to skew polynomial rings

but with skewed scalar multiplication in [8, 9]: For an endomorphism « of a
m

ring R, R is called a- Armendariz (resp. a-skew Armendariz) if for p = 3 a;2*
=0
n
and ¢ = Y b;jz’ in R[z;ql, pg = 0 implies a;b; = 0 (resp. a;a’(b;) = 0) for all
j=0
0<i<mand0<j<n.

On the other hand, an endomorphism « of a ring R is called rigid [12] if
aa(a) = 0 implies a = 0 for a € R, and R is an o-rigid ring [7] if there exists a
rigid endomorphism « of R. Note that any rigid endomorphism of a ring is a
monomorphism, and a-rigid rings are reduced rings by [7, Proposition 5]. Any
a-rigid ring is a-Armendariz 7, Proposition 6], but the converse is not true, in
general; every a-Armendariz ring is a-skew Armendariz, but the converse does
not hold by [9, Theorem 1.7 and Example 1.8]. In [8, Proposition 3], R is an
a-rigid ring if and only if R[z;«] is reduced.

Motivated by the above, in this paper we introduce the notion of an a-
symmetric ring for an endomorphism « of a ring R, as a generalization of a-
rigid rings and an extension of symmetric rings, and study a-symmetric rings
and their related properties. The relationship between a-symmetric rings and
extended Armendariz rings is also investigated. Consequently, several known
results are obtained as corollaries of our results.

Throughout this paper R denotes an associative ring with identity and «
denotes a nonzero and non identity endomorphism, unless specified otherwise.

2. Properties of a-symmetric rings
We begin with the following definition.

Definition 2.1. An endomorphism « of a ring R is called right (left) symmetric
if whenever abc = 0 for a,b,c € R, aca(b) = 0 (a(b)ac = 0). A ring R is called
right (left) a-symmetric if there exists a right (left) symmetric endomorphism
a of R. R is a-symmetric if it is both right and left a-symmetric.

Observe that every subring S with a(S) C S of a right a-symmetric ring is
also right a-symmetric; and any domain R is a-symmetric for any endomor-
phism a of R, but the converse does not hold (see Example 2.7(1) below).

The next example shows that the concept of a-symmetric is not left-right
symmetric.

Example 2.2. Let Z be the ring of integers. Consider a ring

R:{(‘é lc))|a,b,c€Z}.

Note that for A = 8 } and B = (1) (l))ER,WehaveAB:Obut

BA # O. Thus R is not reversible, and so R is not symmetric.
(i) Let @ : R — R be an endomorphism defined by
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((5¢))=(50)

! / " 1"
IfABC:OfOI‘A=<8 Ic)),B=(aO 2,>andcz<a0 i//)ERa

then we get aa’a” = 0 and so aaa’ = 0. Thus this yields ACa(B) = O, and

hence R is right a-symmetric. However, for A = ( 8 1 >; B = < (1) (1) )
10

01 ) € R with ABC = O, we have a(B)AC # O, and thus R
is not left a-symmetric.
(ii) Let 8 : R — R be an endomorphism defined by

a b 0 0
((50))-(5 )
By the similar method to (i), we can show that R is left S-symmetric. However,

10 Ol)mm0:<11>eRmmMm:Q

MA=<01)B: 0 1 0 0

we have ACS(B) # O, and thus R is not right 3-symmetric.

and C =

Proposition 2.3. (1) For a ring R, R is right a-symmetric if and only if
ABC = 0 implies ACa(B) = 0 for any three nonempty subsets A, B and C of
R.

(2) Let R be a reversible ring. R is right a-symmetric if and only if R is left
a-symmetric.

Proof. (1) It suffices to show that ABC = 0 for any three nonempty subsets
A, B and C of R implies ACa(B) = 0, when R is right a-symmetric. Let
ABC =0. Then abc =0 for a € A, b € B and c € C, and hence aca(b) = 0 by
the condition. Thus ACa(B) =3 4 yep.ccc aca(b) = 0.

(2) Let abc = 0 for a,b,c € R. If R is right a-symmetric, then aca(b) = 0.
Since R is reversible, we have a(b)ac = 0 and hence R is left a-symmetric. The
converse is similar. O

Example 2.2 shows that the condition “R is reversible” in Proposition 2.3(2)
cannot be dropped as well as there exists a right symmetric endomorphism «
of a ring R such that R is not symmetric. The next example provides that
there exists a commutative reduced ring R which is not a-symmetric for some
endomorphism « of R.

Example 2.4. Let Z, be the ring of integers modulo 2 and consider a ring R =
Zo @ 7y with the usual addition and multiplication. Then R is a commutative
reduced ring, and so R is symmetric. Now, let a : R — R be defined by
a((a,b)) = (b,a). Then « is an automorphism of R. For a = (1,0),b =
(0,1),¢ = (1,1) € R, abc = 0 but aca(b) = (1,0) # 0, and thus R is not right
a-symmetric.
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Recently, the reversible property of a ring is extended to a ring endomor-
phism in [4] as follows: An endomorphism « of a ring R is called right reversible
if whenever ab =0 for a,b € R, ba(a) = 0. A ring R is called right a.-reversible
if there exists a right reversible endomorphism « of R. The notion of an o-
reversible ring is a generalization of a-rigid rings as well as an extension of
reversible rings.

Theorem 2.5. Let R be a right a-symmetric ring. Then we have the following.
(1) Fora,b,c € R, abc = 0 implies aca™(b) = 0, bea™(a) = 0, and aba™(c) =
0 for any positive integer n, especially, R is a right a-reversible ring.
(2) Let a be a monomorphism of R. Then we have the following.
(i) R is a symmetric ring.
(ii) For a,b,c € R abc = 0 implies a"(a)bc = 0 and aa™(b)c = 0 for
any positive integer n. Conversely, if a™(a)bc = 0, aa™(b)c = 0, or
aba™(c) = 0 for some positive integer m, then abc = 0.

Proof. (1) Let a,b, ¢ € R with abe = 0. Since R is right a-symmetric, aca(b) =
0. Then 0 = aca(b) = (ac)a(b)-1 implies aca’®(b) = 0. Continuing this process,
we have aca™(b) = 0 for any positive integer n. Similarly, 1 - a(bc) = 0 implies
bca(a) = 0. By the same method as above, we obtain bea™(a) = 0 for any
positive integer n. Finally, 0 = abec = (ab)c - 1 implies aba(c) = 0, and thus
aba™(c) = 0 for any positive integer n.

(2) Suppose that a is a monomorphism. (i): Let a,b,¢ € R with abec = 0.
Then aca(b) = 0, and so a(b)a(ac) = 0 by (1). Since « is a monomorphism,
bac = 0 and achb = 0. Thus R is symmetric. (ii): Note that R is symmetric
and so reversible. Let abc = 0. Then bea™(a) = 0 by (1). Since R is reversible,
a™(a)bec = 0. Next, from abc = 0 we have aca™(b) = 0 by (1). Since R is
symmetric, aa™(b)c = 0. Conversely, if @™ (a)bc = 0 for some positive integer
m then a™(a)a™(bc) = a™(abc) = 0 by (i), and thus abe = 0, since a is
a monomorphism. Similarly, if aa™(b)c = 0 then aca™(b) = 0, since R is
symmetric. Hence a™(ac)a™(b) = 0 by (i), and acb = 0 and so abc = 0. By
the same method as above, we can obtain that aba™(¢) = 0 implies abc = 0. O

Corollary 2.6. Every symmetric ring is reversible.

Notice that for any positive integer n, “aa™(b) = 0” is equivalent to “aRa™(b)
= 07, when R is a right a-symmetric ring with ab = 0 for a,b € R: For, abr =0
implies ara(b) = 0 for any r € R. This shows that ara™(b) = 0 for any positive
integer n and any r € R from Theorem 2.5(1), and thus aRa™(b) = 0.

We remark that the converse of Theorem 2.5(1) does not hold. For example,
the ring R with an endomorphism « in Example 2.2(1) is right a-symmetric.

8 i ) = B € R, we have Aa"(B) = O = Ba™(A) for

any positive integer n but AB # O.

However, for A =
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In the next example, part (1) shows that there exists a right a-symmetric
ring R for an automorphism «, but R is not semiprime and so not a-rigid,
and part (2) illuminates that there exists a commutative domain and an a-
symmetric ring R, but R is not a-rigid where « is not a monomorphism.

Example 2.7. (1) Consider a ring

R:{(g ab>|a,beZ}.

Let o : R — R be an endomorphism defined by

(GO )

0 a 0 a )’

Clearly, R is not semiprime and hence R is not a-rigid. Note that o is an

automorphism. Moreover, R is right a-symmetric: Indeed, let ABC = O for
a b al b/ all bll

A= (0 a)’B: ( 0 a,)andC:( 0 a”) € R, then we get

ad'a’ = 0 and aa'd" + ab'a” + ba'a” = 0. If ¢ = 0 then ba'a” =0, ifa’ =0

then ab’a” = 0, and a” = 0 then aa'b” = 0. These imply that aa’a’ = 0

and —aa"b' + ab”a' + ba"a’ = 0. Thus ACa(B) = O, and hence R is right

a-symmetric.

(2) Let R = F[z] be the polynomial ring over a field F. Define a: R — R
by a(f(x)) = f(0) where f(z) € R. Then R is a commutative domain (and
so reduced), but « is not a monomorphism. Since R is a domain, R is right
a-symmetric for any endomorphism « of R. However, R is not a-rigid by [8,
Example 5(2)].

The class of semiprime rings and the class of right o-symmetric rings do
not depend on each other by Example 2.4 and Example 2.7(1). There exists
a skew polynomial ring R[z;a] over a symmetric ring R which is not a sym-
metric ring. For example, consider the commutative ring R = Zy @ Z and the
automorphism «a of R defined by a((a,b)) = (b,a), as in Example 2.4. Then R
is a symmetric ring, but R[z;a] is not reversible hence not symmetric: Indeed,
for p = (1,0),¢ = (0, 1)z € R[z;a], we get pg = 0 but 0 # (0,1)z = gp.

However, we have the following theorem.

Theorem 2.8. (1) For a ring R, R is a-rigid if and only if R is semiprime
and right a-symmetric and « is a monomorphism.

(2) If the skew polynomial ring R[z; o] of a ring R is a symmetric ring, then
R is a-symmetric.

Proof. (1) Let R be a-rigid. Note that any a-rigid ring is reduced and « is a
monomorphism by [7, p. 218]. We show that R is right a-symmetric. Assume
that abc = 0 for a,b,c € R. Then we obtain bac = 0, since R is reduced (and
so symmetric). Thus aca(b)a(aca(b)) = aca(bac)a?(b) = 0. Since R is a-rigid,
aca(b) = 0 and thus R is right a-symmetric.

The converse follows from [4, Proposition 2.5(3)] and Theorem 2.5(1).
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(2) Suppose that abc = 0 for a,b,c € R. Let p=a,q=band h = cz in
R[z;a). Then pgh = abex = 0 € R[z;a). Since R[z;q] is symmetric, we get
0 = phq = (ac)zb = aca(b)z, and so aca(b) = 0. Thus R is right a-symmetric
and therefore R is a-symmetric by Proposition 2.3(2). O

Corollary 2.9 ([10, Proposition 2.7(1)]). A ring R is reduced if and only if R
is a semiprime and symmetric ring.

Observe that the class of right a-symmetric rings and the class of a-Armend-
ariz rings do not depend on each other by Example 2.7(2) and [11, Example
14].

Theorem 2.10. Let R be an a-Armendariz ring. The following statements
are equivalent:

(1) R[z; o] is symmetric.

(2) R is a-symmetric.

(3) R is right a-symmetric.

(4) R is symmetric.

Proof. (1)&(4) by [9, Theorem 3.6 (1)] and (1)=>(2) by Theorem 2.8 (2).
(2)=(3) is trivial. Now we show (3)=-(4). Suppose abc = 0 for a,b,c € R.
Then aca(b) = 0, and so acb = 0 by [9, Proposition 1.3 (2)]. Thus R is
symmetric. d

The next result is a direct consequence of Theorem 2.10.

Corollary 2.11 ([10, Proposition 3.4]). Let R be an Armendariz ring. R is
symmetric if and only if R[z] is symmetric.

Notice that the converse of Theorem 2.8(2) does not hold and the condition
“R is an a-Armendariz ring” in Theorem 2.10 are not superfluous by Example
2.7(2): Indeed, consider A = R[y;a] = F[z][y;a]. Now, let p =1, ¢ = zy and
h =z € A. Then pgh = 0, but phq = z?y # 0. Hence A is not symmetric.
Note that R is not a-Armendariz by [9, Example 1.9].

3. Extensions of a-symmetric rings

Given a ring R and an (R, R)-bimodule M, the trivial extension of R by
M is the ring T(R,M) = R & M with the usual addition and the following
multiplication:

(7‘1, ml)(rg, mz) = (7‘1’!‘2, rims + m1r2).

T >, where r € R and

This is isomorphic to the ring of all matrices ( 6

m € M and the usual matrix operations are used.

For an endomorphism « of a ring R and the trivial extension T'(R, R) of R,
a:T(R,R) — T(R,R) defined by

(5 2))= (" &)
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is an endomorphism of T'(R,R). Since T(R,0) is isomorphic to R, we can
identify the restriction of & on T(R,0) to a.

Note that the trivial extension of a reduced ring is symmetric by [10, Corol-
lary 2.4]. For a right a-symmetric ring R, T(R,R) needs not to be an a-
symmetric ring by the next example.

Example 3.1. Consider the right a-symmetric ring

R={<8 2)|a,bez}.

in Example 2.7(1) where « is defined by

((52))=(5 %)

and

¢= €T(R,R),

0 0 01
0 0 0
ABC = O but AC&(B) # O. Thus R is not @-symmetric.

Recall that another generalization of a symmetric ring is a semicommutative
ring. A ring R is semicommutative if ab = 0 implies aRb = 0 for a,b € R.
Historically, some of the earliest results known to us about semicommutative
rings (although not so called at the time) was due to Shin [16]. He proved that
any symmetric ring is semicommutative ([16, Proposition 1.4]) but the converse
does not hold ([16, Example 5.4(a)]). Semicommutative rings were also studied
under the name zero insertive by Habeb [6].

]

Proposition 3.2. Let R be a reduced ring. If R is an a-symmetric ring, then
T(R, R) is an a-symmetric ring.

Proof. Let ABC = O for
! ! " 1!
A= ( 8 2),3: ( “0 2 ) and C = ( ao 2 > € T(R, R).

Then we have

(1) aa’a” = 0; and

(2) aa'b" + ab'a” + ba'a" = 0.

In the following, we freely use the fact that R is a reduced ring if and only if
for any a,b € R, ab® = 0 (or, a®b = 0) implies ab = 0; and every reduced ring
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is semicommutative. From Eq.(1), we get aa’a’ = 0 and aRa’Ra" = 0. From
Eq.(2)xa", we have aa’b"a" +ab'(a")? +ba'(a")? = 0 and so ab’a” +ba'a" = 0.
Then 0 = a(ab'a"” + ba’a") = a?b'a", and hence ab’'a” = 0. So Eq.(2) becomes
(3) aa’d" +ba'a” = 0.
If we multiply Eq.(3) on the left side by a, then 0 = a?a’b" = aa'b" and so
ba'a” = 0. Then aa'a"” = 0,ab'a" = 0,aa’d” = 0 and ba'a"” = 0, and hence we
obtain aa"a(a’) = 0,aa"a(d’) = 0,ab"a(a’) = 0 and ba"a(a’) = 0, since R is
a-symmetric. Thus AC&(B) = O and therefore T'(R, R) is @-symmetric. U

Corollary 3.3 ([10, Corollary 2.4]). Let R be a reduced ring, then T(R, R) is
a symmetric ring.

The trivial extension T(R, R) of a ring R is extended to a ring

a a2 a1z - Qin
0 a a3 ‘- aon

T, = 0 0 a -+ Q3n |a,aij€R
0 0 6 --- a

for any n > 3 and an endomorphism « of a ring R is also extended to the
endomorphism & : T, = T, defined by a((a;;)) = (a(ai;))-

The following example shows that 7}, cannot be a-symmetric for any n > 3,
even if R is an a-rigid ring.

Example 3.4. Let o be an endomorphism of an a-rigid ring R. Note that if
R is an a-rigid ring, then a(e) = e for €2 = e € R by [7, Proposition 5]. In
particular a(1) = 1. First, we show that T3 is not a-symmetric. For

1 00 0 00 010
A=l 01 0},B=[001]|,C=|00 0]€T;
001 0 0 0 0 00

ABC = O. But we have ACa(B) =CB # O € Ts.
In case of n > 4, we can also prove that T, is not d&-symmetric by the same
method as the above.

Recall that if a is an endomorphism of a ring R, then the map a : R[z] —
R[z] defined by a(} "1~ a;z’) = 31wy a(a;)z* is an endomorphism of the poly-
nomial ring R[z] and clearly this map extends a. The Laurent polynomial ring
R[z,z~'] with an indeterminate , consists of all formal sums Y, a;z*, where
a; € R and k,n are (possibly negative) integers. The map & : R[z,z7'] —
R[z,z7 '] defined by a(} ", a;z’) = Y1, a(a;)z’ extends « and also is an
endomorphism of R[r,z~!]. Multiplication is subject to zr = afr)r and
re=! =z la(r).

The following results extend the class of right a-symmetric rings.

Theorem 3.5. Let R be a ring.
(1) R[z] is right a-symmetric if and only if R{z;x™'] is right a-symmetric.
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(2) If R is an Armendariz ring, then R is right a-symmetric if and only if
R(z] is right a-symmetric.

Proof. (1) It is sufficient, to show necessity. Let f(z),g(z) and h(z) € R[z;z "]
with f(2)g(z)h(z) = 0. Then there exists a positive integer n such that f, (z) =
f(@)z™, g1(z) = g(z)z™ and hy(z) = h(z)z™ € R[z], and so fi(x)g: (z)hi(z) =
0. Since R[z] is right a-symmetric, we obtain fi(z)h(z)a(g:(z)) = 0. Hence
f@)h(z)a(g(z)) = 27" fi(z)hi (z)a(gi(z)) = 0. Thus R[z;z 1] is right a-
symmetric.

(2) It also sufﬁces to establish necessity. Let f(z) = Y.iv,a;z’, g(z) =
> i—o bjz’-and h(z Zk o Cit' € R[z] with f(z)g(x)h(z) = 0. By [1, Propo-
sition 1] abjcr, = 0 for all4, j and k, and so a;cxa(b;) = 0 since R is Armendariz
and right a-symmetric. This yields f(z)h(z)a(g(z)) = 0, and thus R[z] is right
a-symmetric. O

Corollary 3.6. (1) [10, Lemma 3.2(2)] For a ring R, R[z] is symmetric if and
only if so is Rlz;z1].

(2) [10, Proposition 3.4] Let R be an Armendariz ring. R is symmetric if
and only if R[z] is symmetric.

Note that Example 2.2(i) and Example 2.4 show that Armendariz rings and
right o-symmetric rings do not depend on each other.

For an ideal I of R, if a(I) C I then & : R/I — R/I defined by a(a +I) =
a(a) + I is an endomorphism of a factor ring R/I. The homomorphic image of
a symmetric ring may not necessarily be symmetric by [10, p.163]. One may
conjecture that R is a-symmetric if for any right a-symmetric nonzero proper
ideal I of R, R/I is a-symmetric, where I is considered as a ring without
identity. However the next example erases the possibility.

F F

Example 3.7. For a fleld F, consider a ring R = < 0 F

morphism a of R defined by
a b [ a =b
“WNoc¢))7 o )

8 FO ) of R, it can be easily checked that I is right

a-symmetric and the factor ring

Rﬂ:{(g 0>+ImceF}

is reduced. Observe that R/I is a-symmetric, where & is an identity map on
R/I.
10 0 1

11
However,forA:(0 1>,B:(0 O)and C—(O O)ER,we

have ACa(B) # O and ABC = O. Thus R is not right a-symmetric.

) and an endo-

For a right ideal I =
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Theorem 3.8. Let R be a reduced ring and n be any positive integer. If R is
right a-symmetric with a(1) = 1, then R[z]/{(x™) is a right &-symmetric ring,
where {x™) is the ideal generated by x™.

Proof. Let S = R[z]/(z™). If n = 1, then S = R. If n = 2, then S is a-
symmetric by Proposition 3.2, since S = T(R,R). Now, we assume n > 3.
Let f =ag+aiZ+ - +ap 13" ,g=by+b1Z+ -+ b,1Z" ! and h =
co+ 1T+ +cp1Z¥ L € S with fgh = 0, where = z + (z"). Note that
a;bjcx Itk = 0 for all 4,5 and k with ¢+ j + k > n. Hence it suffices to show
the cases 1 + j + k < n — 1. Since fgh = 0, we have the following equations:

(1) aoboco =0.

(2) agbocy + agbicg + arbgeg = 0.

(3) aopbgcs + agbic1 + agbacg + arbper + a1bicg + asboeg = 0.

(n-2) agbgcpn—2 + agbicn—3 + -+ + an_sbico + an—2bpco = 0.

(n-1) agbocn—1 + agbicn_2 + -+ + an_abgcy + an_2b1co + an_1boco = 0.
Recall that R is a reduced ring if and only if for any a,b € R, ab? = 0 implies
ab = 0, and every reduced ring is semicommutative. We use these facts in the
following,.

Eq.(1) and Eq.(2) xboco give a;(boco)? = 0, and so aiboco = 0 and agbocs +
aobicp = 0; multiplying bico gives 0 = agb1(co)? = agbico, so we have

(2)/ aobocl = 0, a0b160 =0 and a1b000 =0.

From Egs.(1), (2)' and (3)xbgco, we get azboco = 0 and

(3)' agbocs + agbicy + agbacy + a1bgcy + arbycg = 0,
in a similar way. If we multiply Eq.(3)" on the right side by bicg, boci, baco and
brc; respectively, then we obtain a1bycy = 0, a1bger = 0, apbaco = 0,a0b1¢c1 =0,
and agbpes = 0 in turn.

Inductively we assume that a;bjer = O for i +j5 +k = 0,1,...,(n — 2).
We apply the above method to Eq.(n-1). First, the induction hypotheses and
Eq.(n-1)xbgcy give an—_1boco = 0 and

(’I’l-].)l aoboCn_1 + agb1Cn_2 + -+ - + an_2bgc1 + Gn—2b1co = 0.

If we multiply Eq.(n-1)" on the right side by by cg, boci, - - ., and bic,—o respec-
tively, then we obtain a,_2b1cp = 0,a,_2bgc1 = 0,...,apb1cn—2 = 0 and so
aobocn—1 = 0, in turn. This shows that a;bjc, = 0 for all ¢, j and k with
i+j+k=n—1. Consequently, a;bjc, =0forall¢,j and k withi+j <n —1,
and thus a;cxa(b;) = 0 for any positive integer ¢ by Theorem 2.5(1). This
yields fha(g) = 0, and therefore S is right &-symmetric. O

Corollary 3.9 ([10, Theorem 2.3]). If R is a reduced ring, then R[z]/(z") is
a symmetric ring for any positive integer n.

Let R be an algebra over a commutative ring S. Recall that the Dorroh
extension of R by S is the ring D = R x S with operations (ry, s1) + (re, s2) =
(ry + 72,81 + 82) and (ry1, 81)(re, 82) = (P79 + 8179 + 8271, 8182), where r; € R
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and s; € §. For an endomorphism « of R and the Dorroh extension D of R by
S, @ :D — D defined by a(r, s) = (a(r), s) is an S-algebra homomorphism.
In the following, we give some other example of right a-symmetric rings.

Proposition 3.10. (1) If e is a central idempotent of a ring R with a(e) = e
and a(l —e) =1 —e, then eR and (1 — e)R are right a-symmetric if and only
if R is right o-symmetric.

(2) If R is a right a-symmetric ring with (1) =1 and S is a domain, then
the Dorroh extension D of R by S is &-symmetric.

Proof. (1) Tt is enough to show the necessity. Suppose that eR and (1 — e)R
are right a-symmetric. Let abc = 0 for a,b,c € R. Then 0 = eabc = a(eb)c
and 0 = (1 — e)abc = a((1 — e)b)c. By hypothesis, we get 0 = aca(eb) =
acea(a) = eaca(b) and 0 = aca((1—e)b) = ac(l—e)a(b) = (1—e)aca(b). Thus
aca(b) = eaca(b) + (1 — €)aca(b) = 0, and therefore R is right a-symmetric.
(2) Let (7‘1,81), (7‘2,52), (7'3,83) € D with (Tl,Sl)(TQ,SQ)(T3,S3) = 0. Then
17273 + 817273 + 827113 + 837172 + 818273 + 8$183T2 + §28311 = 0 and 818983 = 0.
Since S is a domain, we get s; = 0, sy = 0 or s3 = 0. In the following
computations, we freely use the assumption that R is right a-symmetric with
a(l) = 1. If sy = 0, then 0 = rirorg + sor17r5 + S3717rs + S983r; and so
0 =ri(r3+ss)a(ry +s2) = rirza(ry) +r183a(re) +rirssy +r15352. This yields
(r1,81)(r3, 83)a((r2, s2)) = 0. Similarly, let s, = 0. Then (r; +81)r2(r3 4 53) =
0, and so (r1 + s1)(r3 + s3)a(r2) = 0, and hence rirza(rs) + s180a(rz) +
saria(re)+s183a(re) = 0. Thus we have (rq, 51)(r3, s3)a((rz, s2)) = 0. Finally,
let 53 =0. Then (r; +51)(r2 + s2)rs = 0, and s0 0 = (11 + 81)r3(a(r2) + s9) =
(rirs + s183)a(r2) + s2(rirs + s173). This imply (r1,s1)(rs, s3)a@((rq, s2)) = 0.
Therefore the Dorroh extension D is @&-symmetric. a

Corollary 3.11. (1) [10, Proposition 3.6(2)] For an abelian ring R, R is sym-
metric if and only if eR and (1 — e)R are symmetric for every idempotent e of
R if and only if eR and (1 — e)R are symmetric for some idempotent e of R

(2) [10, Proposition 4.2(1)] Let R be an algebra over a commutative ring
S, and D be the Dorroh extension of R by S. If R is symmetric and S is a
domain, then D is symmetric.

Note that the condition “a(1) = 1” in Proposition 3.10(2) cannot be dropped
by the next example.

Example 3.12. Let R = Zy, ¢ Z, and a : R — R be defined by a((a,b)) =
(0,b). Consider the Dorroh extension D of R by the ring of integers Z. Then
we have

((170)70)((1?0)7 _1)((170)70) =0
in D, but
((1,0),0)((1,0),0)@((1,0), _1) = (_(170)70) # 0
in D.
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