• Title/Summary/Keyword: Symmetric Scheme

Search Result 235, Processing Time 0.02 seconds

A SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR FIRST ORDER HYPERBOLIC SYSTEMS

  • Zhang, Tie;Liu, Jingna
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.665-678
    • /
    • 2014
  • We present a new space-time discontinuous Galerkin (DG) method for solving the time dependent, positive symmetric hyperbolic systems. The main feature of this DG method is that the discrete equations can be solved semi-explicitly, layer by layer, in time direction. For the partition made of triangle or rectangular meshes, we give the stability analysis of this DG method and derive the optimal error estimates in the DG-norm which is stronger than the $L_2$-norm. As application, the wave equation is considered and some numerical experiments are provided to illustrate the validity of this DG method.

Computational Study on Turbulent Viscous flow around RAE 'A' Wing Axi-Symmetric Body Configuration ( 비행체 형상에 대한 천음속 점성 유동의 수치적 연구)

  • Im Y. H.;Chang K. S.;Jeong H. K.;Kwon J. H.;Park M. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.81-85
    • /
    • 1997
  • The Computer code KAIST-ADD LUFUNS has been developed to solve 3D compressible turbluent flow. This method employs Harten-Yee's modified upwind scheme in the explicit part and Steger-Warming Splitting in the implicit part. Flow past RAE wing-body aircraft has been computed for three different flow conditions. The result have shown good comparision with the experimental data. Baldwin-Lomax turbluence model is used for this computer code.

  • PDF

Elimination of a Common Mode Voltage Pulse in Converter/Inverter System Modifying Space-Vector PWM Method (공간전압벡터 PWM을 이용한 컨버터/인버터 시스템에서의 커먼 모드 전압 펄스 제거)

  • Lee, Hyeon-Dong;Lee, Yeong-Min;Seol, Seung-Gi
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.2
    • /
    • pp.89-96
    • /
    • 1999
  • This paper proposes a common-mode voltage reduction method base on SVPWM(Space-Vector Pulsewidth Modulation) in three phase PWM converter/inverter system. By shifting the active voltage vector of inverter and aligning this to the active vector of converter, it is possible to eliminate a common-mode voltage pulse in one control period. Since the proposed PWM method maintains the active voltage vector, it does not affect the control performance of PWM converter/inverter system. Without any extra hardware, overall common mode voltage dv/dt and conrresponding leakage current can be reduced to two-third of the conventional three phase symmetric SVPWM scheme.

  • PDF

A PRIORI ERROR ESTIMATES OF A DISCONTINUOUS GALERKIN METHOD FOR LINEAR SOBOLEV EQUATIONS

  • Ohm, Mi-Ray;Shin, Jun-Yong;Lee, Hyun-Young
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.3
    • /
    • pp.169-180
    • /
    • 2009
  • A discontinuous Galerkin method with interior penalty terms is presented for linear Sobolev equation. On appropriate finite element spaces, we apply a symmetric interior penalty Galerkin method to formulate semidiscrete approximate solutions. To deal with a damping term $\nabla{\cdot}({\nabla}u_t)$ included in Sobolev equations, which is the distinct character compared to parabolic differential equations, we choose special test functions. A priori error estimate for the semidiscrete time scheme is analyzed and an optimal $L^\infty(L^2)$ error estimation is derived.

  • PDF

Generalized Joint Channel-Network Coding in Asymmetric Two-Way Relay Channels

  • Shen, Shengqiang;Li, Shiyin;Li, Zongyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5361-5374
    • /
    • 2016
  • Combining channel coding and network coding in a physical layer in a fading channel, generalized joint channel-network coding (G-JCNC) is proved to highly perform in a two-way relay channel (TWRC). However, most relevant discussions are restricted to symmetric networks. This paper investigates the G-JCNC protocols in an asymmetric TWRC (A-TWRC). A newly designed encoder used by source nodes that is dedicated to correlate codewords with different orders is presented. Moreover, the capability of a simple common non-binary decoder at a relay node is verified. The effects of a power match under various numbers of iteration and code lengths are also analyzed. The simulation results give the optimum power match ratio and demonstrate that the designed scheme based on G-JCNC in an A-TWRC has excellent bit error rate performance under an appropriate power match ratio.

Axi-symmetric eddy currents analysis by FEM (유도가열 시스템에서 축대칭도전체의 와전류 유한요소 해석)

  • Choi, K.H.;Ahn, C.H.;Kim, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.119-121
    • /
    • 1994
  • In solving axisymmetric field problem by FEM, absorbing boundary condition is introduced to approximate the normal derivatives on artificial boundary to truncate the finite analysis legion. To verify this scheme eddy currents of an conducting sphere in an uniform magnetic field are calculated, and it shows better results than one with Neumann boundary condition. Also eddy currents of conducting cylinder surrounded by coils are calculated, which is typical model in induction heating system.

  • PDF

Determination of Natural Frequencies of an Engine Crankshaft Using Finite Elements

  • Park, Myung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.4E
    • /
    • pp.20-25
    • /
    • 1999
  • To get accurate natural frequencies of an engine crankshafts, finite element equations of motion are developed, taking real geometries of the shaft into account. For the crankshaft with wide crank webs, a specialized rotating web element is developed. This includes the effects of rotary inertia, gyroscopic moment, and shear. After the finite element equations are constructed, eigenvalues are extracted from the system equations to get natural frequencies, based on the Sturm sequence method which exploits the banded forms of the system matrices to reduce computations. The scheme developed can be used for the free vibration analysis of any type of spinning structures which include skew symmetric gyroscopic moment matrix in the system matrices. The results are compared with experimental data in order to confirm the study.

  • PDF

Development of Efficient Moving Memory Column Solver for Large Finite Element Analysis (대형 유한요소 해석을 위한 골조구조물의 최종강도해석에 관한 연구)

  • 이성우;이동근;송윤환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.34-39
    • /
    • 1990
  • For the analysis of structures, specifically if it is large-scale, in which case it can not be solved within the core memory, the majority of computation time is consumed In the solution of simultaneous linear equation. In this study an efficient in- and out-of-core column solver for sparse symmetric matrix utilizing memory moving scheme is developed. Compare with existing blocking methods the algorithm is simple, therefore the coding and computational efficiencies are greatly enhanced. Upon available memory size, the solver automatically performs solution within the core or outside core. Analysis example shows that the proposed method efficiently solve the large structural problem on the small-memory microcomputer.

  • PDF

Numerical Methods for Wave Response in Harbor (항만내의 파도 응답에 관한 수치 계산)

  • D.J.,Kim;K.J.,Bai
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.3
    • /
    • pp.3-12
    • /
    • 1988
  • A natural or an artificial harbor can exhibit frequency(or period) dependent water surface oscillations when excited by incident waves. Such oscillations in harbors can cause significant damage to moored ships and adjacent structures. This can also induce undesirable current in harbors. Many previous investigators have studied various aspects of harbor resonance problem. In the percent paper, both a localizes finite element method(LFEM) which is based on the functional constructed by Chen & Mei(1974) and Bai & Yeung(1974) and an integral equation method which was used by Lee(1969) are applied to harbor resonance problem. The present method(LFEM) shows computationally more efficient than the integral equation method. Our test results shows good agreement compared with other results. This enhanced computational efficiency is due to the fact that the present method gives a banded symmetric coefficients matrix and requires much less computational time in the calculation of the influence coefficients matrix than the integral equation method involved with Green's function. To test the present numerical scheme, two models are treated here. The present method(LFEM) can be extended to a fully three dimensional harbor problem with the similar computational advantage.

  • PDF

Fault-Tolerant Tripod Gaits for Hexapod Robots (육각 보행 로봇의 내고장성 세다리 걸음새)

  • 양정민;노지명
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.12
    • /
    • pp.689-695
    • /
    • 2003
  • Fault-tolerance is an important design criterion for robotic systems operating in hazardous or remote environments. This paper addresses the issue of tolerating a locked joint failure in gait planning for hexapod walking machines which have symmetric structures and legs in the form of an articulated arm with three revolute joints. A locked joint failure is one for which a joint cannot move and is locked in place. If a failed joint is locked, the workspace of the resulting leg is constrained, but hexapod walking machines have the ability to continue static walking. A strategy of fault-tolerant tripod gait is proposed and, as a specific form, a periodic tripod gait is presented in which hexapod walking machines have the maximum stride length after a locked failure. The adjustment procedure from a normal gait to the proposed fault-tolerant gait is shown to demonstrate the applicability of the proposed scheme.