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ABSTRACT. A discontinuous Galerkin method with interior penalty terms is presented for lin-
ear Sobolev equation. On appropriate finite element spaces, we apply a symmetric interior
penalty Galerkin method to formulate semidiscrete approximate solutions. To deal with a damp-
ing term ∇ · (∇ut) included in Sobolev equations, which is the distinct character compared to
parabolic differential equations, we choose special test functions. A priori error estimate for
the semidiscrete time scheme is analyzed and an optimal L∞(L2) error estimation is derived

1. INTRODUCTION

Discontinuous Galerkin methods using interior penalties have been used very widely for
solving various types of differential equations, including computational fluid problems. By
virture of the potential of error control and mesh adaptation and the local mass conservation,
DG methods are preferred over the standard Galerkin method.

Since Baker [4] firstly introduced the interior penalty method with nonconforming elements
for elliptic equations, discontinuous Galerkin methods with interior penalties for elliptic and
parabolic equations have been developed by several authors [1, 5, 14]. They generalized
the Nitsche method in [6] which treated the Dirichlet boundary condition by introducing the
penalty terms on the boundary.

New applications of disconticontinuous Galerkin methods with interior penalties to nonlin-
ear parabolic equations are considered in [9, 10, 11]. The authors in [9, 10, 11] developed
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elementwise conservative DG methods and derived a priori and a posteriori error estimates in
higher dimensions.

The purpose of this paper is to consider the discontinuous Galerkin approximations of
Sobolev differential equations with one time derivative appearing in the highest space deriv-
ative term. Sobolev equations are used to study the consolidation of clay, heat conduction,
homogeneous fluid flow in fissured material, shear in second order fluids and other physical
models.

In [12, 13], the authors constructed semidiscrete DG approximations and fully discrete DG
approciamtions and obtained the optimal L∞(H1) error estimates for the nonlinear Sobolev
equations. In this paper we construct semidiscrete DG approximations and analyze a priori
optimal L∞(L2) error estimaties for the linear Sobolev equations. In section 2 we introduce
a model problem and some assumptions. In section 3 several notations and preliminaries are
described and discontiuous Galerkin seimidiscrete scheme is formulated. Finally an optimal a
priori L∞(L2) error estimate is analyzed in section 4.

2. MODEL PROBLEMS AND ASSUMPTIONS

Consider the following linear Sobolev equation

ut −∇ · (∇u +∇ut) = f(x, u) in Ω× (0, T ], (2.1)

with the boundary condition

(∇u +∇ut) · n = 0 on ∂Ω× (0, T ], (2.2)

and the initial condition

u(x, 0) = u0(x) in Ω, (2.3)

where Ω is a bounded convex domain in Rd, d = 2, 3 and n is the unit outward nomal vector
to ∂Ω.

We assume that the following conditions are satisfied.

1. f is uniformly Lipschitz continuous with respect to its second variable.
2. The model problem has a unique solution satisfying the following regularity condi-

tions:

u ∈ L∞((0, T ),Hs(Ω)), ut ∈ L2((0, T ),Hs(Ω))

for s ≥ 2.
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3. NOTATIONS AND DISCONTINUOUS GALERKIN APPROXIMATIONS

Let Eh = {E1, E2, · · · , ENh
} be a regular quasi-uniform subdivision of Ω, where Ej is

a triangle or a quadilateral if d = 2 and Ej is a 3-simplex or 3-rectangle if d = 3. Let
hj = diam(Ej) be the diameter of Ej and h = max

1≤j≤Nh

hj . The regularity means that there

exists a constant ρ > 0 such that each Ej contains a ball of radius ρhj . The quasiuniformity
reguirement is that there is a constant γ > 0 such that

h

hj
≤ γ, j = 1, · · · , Nh

These quasi-uniformity and regularity assumptions are reguired for driving error estimates in
terms of the degree of polynomials.

We denote the set of all edges of the elements by {e1, e2, · · · , ePh
, ePh+1, · · · , eMh

} where
ek ⊂ Ω, for 1 ≤ k ≤ Ph, ek ⊂ ∂Ω for Ph + 1 ≤ k ≤ Mh. nk is unit outward nomal vector to
Ei if ek = ∂Ei ∩ ∂Ej for i < j and 1 ≤ k ≤ Ph and nk = n, Ph + 1 ≤ k ≤ Mh.

For an s ≥ 0 and a domain E ⊂ Rd, the usual norm of Sobolev space Hs(E) is denoted by
‖ · ‖s,E , and the usual seminorm is denoted by | · |s,E . If E = Ω we write ‖ · ‖s, | · |s instead of
‖ · ‖s,Ω, | · |s,Ω and if s = 0 we use ‖ · ‖ instead of ‖ · ‖0.

For s ≥ 0 and a given subdivision Eh, we define the following space

Hs(Eh) = {v ∈ L2(Ω) : v|Ej ∈ Hs(Ej), j = 1, · · · , Nh}.
Now, for φ ∈ Hs(Eh), s > 1

2 , we define the following average function {φ} and jump
function [φ],

{φ} =
1
2
(φ|Ei)|ek

+
1
2
(φ|Ej )|ek

, ∀x ∈ ek, 1 ≤ k ≤ Ph

[φ] = (φ|Ei)|ek
− (φ|Ej )|ek

, ∀x ∈ ek, 1 ≤ k ≤ Ph,

where ek = ∂Ei ∩ ∂Ej , i < j.
The usual L2 inner product, for the functions φ, ψ ∈ L2(E), is denoted by (φ, ψ)E . If

E = Ω we use (φ, ψ) instead of (·, ·)Ω.
We define the following broken norms associated with Hs(Eh) for s ≥ 2,

|||φ|||20 =
Nh∑

j=1

‖φ‖2
0,Ej

|||φ|||21 =
Nh∑

j=1

(‖φ‖2
1,Ej

+ h2
j |φ|22,Ej

) + Jσ(φ, φ)

|||φ|||22 =
Nh∑

j=1

‖φ‖2
2,Ej
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where Jσ(φ, ψ) =
Ph∑
k=1

σk

|ek|
∫
ek

[φ][ψ]ds is an interior penalty term and σ is a discrete positive

function that takes the constant value σk on the edge ek and is bounded below by σ0 > 0 and
above by σ∗.

Let r be a positive integer. The finite element space is taken by

Dr(Eh) =
Nh∏

j=1

Pr(Ej)

where Pr(Ej) denotes the set of all polynomials of total degree not greater than r on Ej .
Throughout this paper the symbol C indicates a generic positive constant independent of h and
is not necessarily the same in any two places. The following hp approximation properties are
proved in [2, 3].

Lemma 3.1. Let Ej ∈ Eh, and u ∈ Hs(Ej). There are a constant C independent of u r and
h, and û ∈ Pr(Ej) such that for any 0 ≤ q ≤ s,

‖u− û‖q,Ej ≤ C
hµ−q

j

rs−q
‖u‖s,Ej s ≥ 0

‖u− û‖0,ej ≤ C
h

µ−1/2
j

rs−1/2
‖u‖s,Ej s >

1
2

‖u− û‖1,ej ≤ C
h

µ−3/2
j

rs−3/2
‖u‖s,Ej s >

3
2

where µ = min(r + 1, s) and ej is an edge or a face of Ej .

The following Lemma states the trace inequalities whose proofs are given in [1].

Lemma 3.2. For each Ej ∈ Eh, there exists a positive constant C depending only on γ and ρ
such that the following two trace inequalities hold:

‖φ‖2
0,ej

≤ C

(
1
hj
|φ|20,Ej

+ hj |φ|21,Ej

)
, ∀φ ∈ H1(Ej),

‖∇φ · ηj‖0,ej ≤ C

(
1
hj
|φ|21,Ej

+ hj |φ|22,Ej

)
, ∀φ ∈ H2(Ej),

where ej is an edge or a face of Ej and ηj is the unit outward normal vector to ej .

We define a bilinear functional A on H2(Eh)×H2(Eh) by

A(φ, ψ) =
Nh∑

k=1

(∇φ,∇ψ)Ek
−

Ph∑

k=1

∫

ek

{∇φ · nk}[ψ]ds−
Ph∑

k=1

∫

ek

{∇ψ · nk}[φ]ds + Jσ(φ, ψ).
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From (2.1), u satisfies the following weak formulation

(ut, v) + A(u, v) + A(ut, v) = (f(u), v), ∀v ∈ Hs(Eh). (3.1)

Now we formulate a semidiscrete DG approximation to (3.1) as follows: Find U(·, t) ∈
Dr(Eh) satisfying

{
(Ut, v) + A(U, v) + A(Ut, v) = (f(U), v), ∀Dr(Eh),
U(·, 0) = U0

(3.2)

where U0 is an appropriate projection of the initial condition u0(x) onto Dr(Eh). For example,
we can choose U0 as ũ(x, 0) to be defined later.

Define Aλ(φ, ψ) = A(φ, ψ) + λ(φ, ψ), with λ > 0. Then we obtain the following lemmas
which can be proved easily by using Lemma 3.2 and the definition of ||| · |||1.

Lemma 3.3. For λ > 0, there exists a constant C independent of h satisfying

|Aλ(φ, ψ)| ≤ C|||φ|||1|||ψ|||1, ∀φ, ψ ∈ H2(Eh).

Lemma 3.4. For a sufficiently lage σ and λ > 0, there exists a positive constant β such that

Aλ(v, v) ≥ β|||v|||21, ∀v ∈ Dr(Eh).

Proof. For an arbitrary small constant δ > 0, we have, by Lemma 3.2

Aλ(v, v) =
Nh∑

j=1

(∇v,∇v)Ej − 2
Ph∑

k=1

∫

ek

{∇v · nk}[v] + Jσ(v, v) + λ(v, v)

≥ |||∇v|||20 − δ

Ph∑

k=1

|ek|‖{∇v}‖2
0,ek

− δ−1

σ0

Ph∑

k=1

σk

|ek|‖[v]‖2
0,ek

+ Jσ(v, v) + λ‖v‖2

≥ |||∇v|||20 − Cδ

Nh∑

j=1

hj(h−1
j ‖∇v‖2

0,Ej
+ hj‖∇2v‖2

0,Ej
) +

(
1− δ−1

σ0

)
Jσ(v, v)

+ λ‖v‖2

≥ |||∇v|||20 − Cδ|||∇v|||20 +
(

1− δ−1

σ0

)
Jσ(v, v) + λ‖v‖2

=
(

1
2
− Cδ

)
|||∇v|||20 +

1
2
|||∇v|||20 +

(
1− cδ−1

σ0

)
Jσ(v, v) + λ‖v‖2

≥
(

1
2
− Cδ

)
|||∇v|||20 + C

Nh∑

j=1

h2
j‖∇2v‖2

0,Ej
+

(
1− Cδ−1

σ0

)
Jσ(v, v) + λ‖v‖

≥ β|||v|||21.



174 MI RAY OHM, JUN YONG SHIN, AND HYUN YOUNG LEE

By Lemma 3.3 and Lemma 3.4, if λ > 0 there exists ũ ∈ Dr(Eh) satisfying

Aλ(u− ũ, χ) = 0, ∀χ ∈ Dr(Eh).

Now we state the following Lemma which is essential for the proof of the optimal con-
vergence of the semidiscrete approximation in the norm L∞(L2). The proof can be found in
[8].

Lemma 3.5. For λ ≥ 0, we let t ∈ [0, T ] be fixed and suppose that there exists φ ∈ H2(Eh)
satisfying

Aλ(φ, v) = F (v), ∀v ∈ Dr(Eh),

where F : H2(Eh) → R is a linear map. If there exist M1, M2 > 0 satisfying

|F (ψ)| ≤ M1|||ψ|||1, ψ ∈ H2(Eh)

|F (ψ)| ≤ M2‖ψ‖2, ψ ∈ H2(Ω) ∩H1
0 (Ω),

then we have the following estimation

‖φ‖ ≤ C(|||φ|||1 + M1)h + M2.

Proof. For φ ∈ L2(Ω), let ψ ∈ H2(Ω) ∩H1
0 (Ω) be the solution of an elliptic problem

−∆ψ + λψ = φ. (3.3)

From the regularity property of the elliptic problem, then we have

‖ψ‖2 ≤ C‖φ‖.
Let ψI be the interpolant of ψ such that |||ψ − ψI |||1 ≤ Ch‖ψ‖2. Then from (3.3) and the
assumptions we get the following inequalities

‖φ‖2 = (φ, φ) = (φ,−∆ψ + λψ) = Aλ(φ, ψ)

= Aλ(φ, ψ − ψI) + Aλ(φ, ψI)

≤ C|||φ|||1|||ψ − ψI |||1 + F (ψI)

≤ C|||φ|||1h‖ψ‖2 + F (ψ)− F (ψ − ψI)

≤ Ch|||φ|||1‖ψ‖2 + M2‖ψ‖2 + M1|||ψ − ψI |||1
≤ Ch|||φ|||1‖ψ‖2 + M2‖ψ‖2 + ChM1‖ψ‖2

≤ C(h|||φ|||1‖φ‖+ M2‖φ‖+ M1h‖φ‖).
Therefore we get

‖φ‖ ≤ C[(|||φ|||1 + M1)h + M2].
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4. OPTIMAL L∞(L2) ERROR ESTIMATE

Now, to prove the L∞(L2) optimal convergence of u− U , we denote

η = u− ũ, θ = ũ− û, ξ = ũ− U, e = u− U. (4.1)

Theorem 4.1. For r, s ≥ 2, there exists a constant C independent of h satisfying the following
statements:

(i) |||u− ũ|||1 ≤ C
hµ−1

rs−2
‖u‖s,

(ii) ‖u− ũ‖ ≤ C
hµ

rs−2
‖u‖s,

(iiii) |||ut − ũt|||1 ≤ C
hµ−1

rs−2
‖ut‖s,

(iv) ‖ut − ũt‖ ≤ C
hµ

rs−2
‖ut‖s.

Proof. From Lemma 3.3 and Lemma 3.4, we get

|||θ|||21 ≤ CAλ(θ, θ) = CAλ(u− û, θ) ≤ C|||u− û|||1|||θ|||1
from which we get

|||θ|||1 ≤ C|||u− û|||1. (4.2)
By the definition of ||| · |||1, Lemma 3.1 and Lemma 3.2, we have

|||u− û|||21 =
Nh∑

j=1

(
‖u− û‖2

1,Ej
+ h2

j |u− û|22,Ej

)
+ Jσ(u− û, u− û)

≤
Nh∑

j=1

C

(
h

2(µ−1)
j

r2(s−1)
‖u‖2

s,Ej
+ h2

j

h
2(µ−2)
j

r2(s−2)
‖u‖2

s,Ej

)
+

Ph∑

k=1

σk

|ek|
∫

ek

[u− û]2ds

≤ C

Nh∑

j=1

h
2(µ−1)
j

r2(s−2)
‖u‖2

s,Ej
+ C

Ph∑

k=1

|ek|−1‖u− û‖2
0,ek

≤ C

Nh∑

j=1

h
2(µ−1)
j

r2(s−2)
‖u‖2

s,Ej
+ C

Nh∑

j=1

h−1
j

(
h−1

j ‖u− û‖2
0,Ej

+ hj‖∇(u− û)‖2
0,Ej

)

≤ C

Nh∑

j=1

h
2(µ−1)
j

r2(s−2)
‖u‖2

s,Ej
+ C

Nh∑

j=1

h−2
j

(
h2µ

j

r2s
+ h2

j

h
2(µ−1)
j

r2(s−1)

)
‖u‖2

s,Ej

≤ C

Nh∑

j=1

h
2(µ−1)
j

r2(s−2)
‖u‖2

s,Ej
,
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which implies

|||u− û|||1 ≤ C
hµ−1

rs−2
‖u‖s. (4.3)

From the triangle inequality, (4.2) and (4.3), we obtain

|||u− ũ|||1 ≤ |||u− û|||1 + |||û− ũ|||1 ≤ C|||u− û|||1 ≤ C
hµ−1

rs−2
‖u‖s,

which proves (i).
By applying the result of Lemma 3.5 with M1 = M2 = 0, we get the statement (ii) as

follows
‖u− ũ‖ ≤ C|||u− ũ|||1h ≤ C

hµ

rs−2
‖u‖s.

Differentiating Aλ(η, v) = 0 with respect to t, we get
Nh∑

j=1

(∇ηt,∇v)Ej −
Ph∑

k=1

∫

ek

{∇ηt · nk}[v]−
Ph∑

k=1

∫

ek

{∇v · nk}[ηt] + Jσ(ηt, v) + λ(ηt, v) = 0

which implies
Aλ(ηt, v) = 0.

By applying Lemma 3.5 with M1 = M2 = 0, we get

‖ηt‖ ≤ ch|||ηt|||1.
From the definition of η and θ, we seperate ηt into

|||ηt|||1 ≤ |||θt|||1 + |||ut − ût|||1.
The results of Lemma 3.3 and Lemma 3.4 imply that

|||θt|||21 ≤ CAλ(θt, θt) = CAλ(ut − ût, θt)− CAλ(ηt, θt)

= CAλ(ut − ût, θt) ≤ C|||ut − ût|||1|||θt|||1.
Therefore we get

|||θt|||1 ≤ C|||ut − ût|||1,
|||ηt|||1 ≤ C|||ut − ût|||1.

By applying Lemma 3.1 and Lemma 3.2, we get

|||ut − ût|||21 ≤ C

Nh∑

j=1

(
h

2(µ−1)
j

r2(s−1)
‖ut‖2

s,Ej
+ h2

j

h
2(µ−2)
j

r2(s−2)
‖ut‖2

s,Ej

)
+ C

Ph∑

k=1

|ek|−1‖ut − ût‖2
0,ek

≤ C

Nh∑

j=1

h
2(µ−1)
j

r2(s−2)
‖ut‖2

s,Ej
+ C

Nh∑

j=1

h−2
j

(
‖ut − ût‖2

0,Ej
+ h2

j‖∇(ut − ût)‖2
0,Ej

)

≤ C

Nh∑

j=1

h
2(µ−1)
j

r2(s−2)
‖ut‖2

s,Ej
,
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which implies

|||ut − ût|||1 ≤ C
hµ−1

rs−2
‖ut‖s,

|||ηt|||1 ≤ C
hµ−1

rs−2
‖ut‖s,

and

‖ηt‖ ≤ C
hµ

rs−2
‖ut‖s.

Theorem 4.2. If λ > 0 is sufficiently small, then there exists a constant C independent of h
satisfying the followings:

(i) ‖u− U‖L∞(L2) ≤ C
hµ

rs−2

(‖u‖L∞(Hs) + ‖ut‖L2(Hs)

)

(ii) |||u− U |||L2(|||·|||1) ≤ C
hµ−1

rs−2

(‖u‖L2(Hs) + ‖ut‖L2(Hs)

)

(iii) ‖ut − Ut‖L2(L2) ≤ C
hµ

rs−2

(‖u‖L2(Hs) + ‖ut‖L2(Hs)

)

(iv) |||ut − Ut|||L2(|||·|||1) ≤ C
hµ−1

rs−2

(‖u‖L2(Hs) + ‖ut‖L2(Hs)

)

Proof. From the notation (4.1), we have e = η + ξ. By subtracting (3.2) from (3.1), we have

(et, v) + A(e, v) + A(et, v) = (f(u)− f(U), v), ∀v ∈ Dr(Eh).

By applying the definition of Aλ, we get

(et, v) + Aλ(e, v) + Aλ(et, v) = (f(u)− f(U), v) + λ(e, v) + λ(et, v), ∀v ∈ Dr(Eh).

From the equation above, we can deduce

(ξt, v) + Aλ(ξ, v) + Aλ(ξt, v)

= − (ηt, v)−Aλ(η, v)−Aλ(ηt, v) + (f(u)− f(U), v) + λ(u− U, v)

+ λ(ut − Ut, v)

= − (ηt, v) + (f(u)− f(U), v) + λ(u− U), v) + λ(ut − Ut, v)

= − (ηt, v) + (f(u)− f(U), v) + λ(ξ, v) + λ(η, v) + λ(ξt, v) + λ(ηt, v).

(4.4)

Now we choose v = ξ + ξt in (4.4), to get

‖ξt‖2 +
1
2

d

dt
(ξ, ξ) + Aλ(ξ, ξ) + 2Aλ(ξ, ξt) + Aλ(ξt, ξt)

= − (ηt, ξ)− (ηt, ξt) + (f(u)− f(U), ξ + ξt) + λ(ξ, ξ + ξt) + λ(η, ξ + ξt)

+ λ(ξt, ξ + ξt) + λ(ηt, ξ + ξt),
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which yields the following inequality

‖ξt‖2 +
1
2

d

dt
(ξ, ξ) + Aλ(ξ, ξ) + Aλ(ξt, ξt) + 2

[ Nh∑

k=1

(∇ξ,∇ξt)Ek

−
Ph∑

k=1

∫

ek

{∇ξ · nk}[ξt]−
Ph∑

k=1

∫

ek

{∇ξt · nk}[ξ] + Jσ(ξ, ξt) + λ(ξ, ξt)
]

≤ (1 + λ)‖ηt‖‖ξ‖+ (1 + λ)‖ηt‖‖ξt‖+ K(‖η‖+ ‖ξ‖)(‖ξ‖+ ‖ξt‖) + λ‖ξ‖2

+ 2λ(ξ, ξt) + λ‖η‖‖ξ‖+ λ‖ξt‖2 + λ‖η‖‖ξt‖.

If λ is sufficiently small, we obtain the following inequality

‖ξt‖2 + Aλ(ξ, ξ) + Aλ(ξt, ξt) +
1
2

d

dt

[
((1 + λ)ξ, ξ) + 2

Nh∑

k=1

(∇ξ,∇ξ)Ek
+ 2Jσ(ξ, ξ)

]

≤ C
(‖ηt‖2 + ‖η‖2 + ‖ξ‖2

)
+ ε‖ξt‖2 + 2

(
Ph∑

k=1

∫

ek

{∇ξ · nk}[ξt] +
Ph∑

k=1

∫

ek

{∇ξt · nk}[ξ]
)

.

By the definition of J and Lemma 3.2, we can find that

‖ξt‖2 + Aλ(ξ, ξ) + Aλ(ξt, ξt) +
1
2

d

dt

[
(ξ, ξ) + 2

Nh∑

k=1

(∇ξ,∇ξ)Ek
+ Jσ(ξ, ξ)

]

≤ C
(‖ηt‖2 + ‖η‖2 + ‖ξ‖2

)
+ C|||∇ξ|||20 + εJσ(ξt, ξt) + CJσ(ξ, ξ) + ε|||∇ξt|||20,

which implies that

‖ξt‖2 + |||ξ|||21 + |||ξt|||21 +
1
2

d

dt

[‖ξ‖2 + |||∇ξ|||20 + Jσ(ξ, ξ)
]

≤ C
[‖ηt‖2 + ‖η‖2 + ‖ξ‖2 + |||∇ξ|||20 + Jσ(ξ, ξ)

]
.

(4.5)

By integrating (4.5) from t = 0 to t = τ , we have

‖ξ‖2(τ) + |||∇ξ|||20(τ) + Jσ(ξ, ξ)(τ) +
∫ τ

0
[‖ξt‖2 + |||ξ|||21 + |||ξt|||21]dt

≤ ‖ξ‖2(0) + ‖∇ξ‖2(0) + Jσ(ξ, ξ)(0) + C

∫ τ

0
[‖ξ‖2 + |||∇ξ|||20 + Jσ(ξ, ξ)]dt

+ C

∫ t

0
(‖ηt‖2 + ‖η‖2)dt.
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Gronwall’s Lemma and the approximation results from Theorem 4.1 imply that

‖ξ‖2(τ) + |||∇ξ|||20(τ) + Jσ(ξ, ξ)(τ) +
∫ τ

0
[‖ξt‖2 + |||ξ|||21 + |||ξt|||21]dt

≤ C

∫ τ

0
(‖ηt‖2 + ‖η‖2)dt

≤ C
h2µ

r2(s−2)
(‖u‖2

L2(Hs) + ‖ut‖2
L2(Hs)).

(4.6)

From (4.6), we get the following approximations

‖ξ‖L∞(L2) ≤ C
hµ

rs−2
(‖u‖L2(Hs) + ‖ut‖L2(Hs))

‖ξ‖L2(|||·|||1) ≤ C
hµ

rs−2
(‖u‖L2(Hs) + ‖ut‖L2(Hs)).

Using the inequality (4.6) again, we have

‖ξt‖L2(L2) ≤ C
hµ

rs−2
(‖u‖L2(Hs) + ‖ut‖L2(Hs))

‖ξt‖L2(|||·|||1) ≤ C
hµ

rs−2
(‖u‖L2(Hs) + ‖ut‖L2(Hs)).

Therefore by the triangle inequality and Theorem 4.1, we obtain the statements (i) and (ii) as
follows:

‖e‖L∞(L2) ≤ ‖η‖L∞(L2) + ‖ξ‖L∞(L2)

≤ C
hµ

rs−2
(‖u‖L∞(Hs) + ‖ut‖L2(Hs))

and

‖e‖L2(|||·|||1) ≤ ‖η‖L2(|||·|||1) + ‖ξ‖L2(|||·|||1)

≤ C
hµ−1

rs−2
(‖u‖L2(Hs) + ‖ut‖L2(Hs)).

Again applying the triangle inequality and Theorem 4.1, we prove the statements (iii) and (iv)
as follows

‖et‖L2(L2) ≤ ‖ηt‖L2(L2) + ‖ξt‖L2(L2)

≤ C
hµ

rs−2
(‖u‖L2(Hs) + ‖ut‖L2(Hs))

and

‖et‖L2(|||·|||1) ≤ ‖ηt‖L2(|||·|||1) + ‖ξt‖L2(|||·|||1)

≤ C
hµ−1

rs−2
(‖u‖L2(Hs) + ‖ut‖L2(Hs)).
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