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Determination of Natural Frequencies of an Engine Crankshaft Using

Finite Elements

*Myung-Jin Choi

Abstract

To get accurate natural frequencies of 차n engine crankshafts, finite element equations of motion are developed, taking 
real geometries of the shaft into account. For the crankshaft with wide crank webs, a specialized rotating web element is 

developed. This includes the effects of rotary inertia, gyroscopic moment, and shear. After the finite eleme매 equations are 

construetwi, eigenvalues are extracted from the system equations to get natural frequencies, based on the Sturm sequence 
method which exploits the banded forms of the system matrices to reduce computations. The scheme developed can be 

used for the free vibration analysis of any type of spinning structures which include skew symmetric gyroscopic moment 

matrix in the system matrices. The results are compared with experimental data in order to confirm the study.

I. Introduction

Many papers have reported that the main source of 

unpleasant cabin noise in passenger cars usually originates 
from crankshaft vibrations[l]. Crankshafts are subject to 

many different forces during operation[2], and a accurate 
dynamic model of the shafts is indispensable to study 

noise and vibration problems. There are various types of 
crankshafts. These depend on specific requirements of 
engines for different applications. Since each crankshaft 

has its peculiar characteristics, it is impossible to apply 
the acquired characteristics in the design of other engines 

of different size, power, speed, and operating conditions. 
One of most important characteristics in crankshaft 
design is critical speeds, which are natural frequencies of 
the crankshaft vibration. In general, natural frequencies of 
a crankshaft were estimated by reducing the crankshaft to 

a pure torsional system according to rules of thumb, and 

were approximated as shaft portions and disks using 

Holzer's method[3, 4]. Due to the complex geometry, 

investigations of crankshafts considering real geometries 

are limited. Most of research used simplified mod이s 
applying Myklestad method. Bagci[5] determined natural 
frequencies of crankshafts using spatial finite line 
element, but his element is not suitable for a crankshaft 

with wide crank webs and the gyroscopic moment effect 
is not considered, which may be considerable in high speed 

engines. Bargis et al [6] investigated crankshaft design and 
evaluation methods based on critical an지ysis, experiments,
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modal analysis, and direct integration as a series. Recently, 
the works of Okamura and other Japanese researchers[l] 

were reported, which are on three dimensional vibration 

of automobile engine crankshafts. They used a dynamic 

stiffness approach and simplified crank web geometry as 
a rectangular beam. They neglect the effects of gyroscopic 
moment and shear deformation in constructing the 

equations of motion.
In this study, for the crankshaft with wide crank 

webs, a specialized finite element, rotating web element, 
is developed to get the natural frequencies, considering 

the real geometry and the effects of rotary inertia, 
gyroscopic moment, and shear. The results are compared 
with experimental data in order to confinn the scheme 

developed.

II. 에oWlling

An engine crankshaft body can be modelled by 

rotating shaft and rotating web elements. Main and crank 

pin journals are modelled as three dimension이 rotating 

shaft elements and crank webs are modelled as rotating 
web elements developed in this study.

The shaft element is considered to be initially straight 
and the cross section is circular and modelled as a 

2-node element of length Lf7]. Each node has 5 degrees 

of freedom, 2 translations and 3 rotations. The finite 

element equations are represented as

[的負}-0G]{a} + [KHa} = {R}關 ⑴

where
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[皿=pA^ MW 町:Nr，、ME或 N/N^x

[G]=N/N&- N：N&dx

L%=以J： BrTB^x + kAG^ BsTBsdx+ GlJ；

ptA,IfIptand Q represent density, cross sectional 

area, moment of inertia, polar moment of inertia, and 

rotating speed, respectively. E and G are Young's 

modulus and shear modulus, k is shear constant. 

Matrices N, and B, represent shape functions and their 

derivatives, i=t, r,如。，如 s.

Fig. 1 shows a typical rotating web element, of which 

free body diagrams in the x-z plane and the y-z plane 
are shown in Fig. 2, the element rotates with respect to 

z-axis. When the element rotates at a high speed, 

gyroscopic moment is not negligible. From the free body 

diagrams, we can get gyroscopic moment, Tx and 7, 

from the right hand rule of mechanics.

Tx = pIpQ<^ Ty~ — pIpQ3 (2)

Then the external virtual work due to the gyroscopic 

moments, 8a)gt becomes

V. r v

Figure 1. Rotating web element.

8wg= 以准싸'。從。dV- ' 獭dV)

=pIpQ( wt ySwt xdV— wt x8wt /ZV)

(3)

Figure 2. Free body diagram for the rotating web element.

From Figure 1, the coordinates of any points in the 

element are

x= 爵沽 y= 為\泌 z= 公喝 + 支尸舌느

(4)

xit yit Zp and 0 are coordinates and thickness at the 

nodes of the element, £, 자, and f are the natural 

coordinates in the x, y, and z direction, NjS are shape 

or interpolation functions. In this study, the shape 

functions of the plane linear isoparametric element are 
adapted[7]. Then, this model assures convergence, because 

trial displacement functions satisfy the compatibility 

criterion and the completeness criterion for convergence.
Generic displacements in tenns of nodal displacements 

are, for i = 1, 2, 3, 4,

Nt 0 0 0 N 古이 2
如

= 0 Nt 0 -Niitj/2 0 Q^i

0 0 M 0 0 知

Jacobian matrix and its inverse are

=[刀*
* 0

〔刀= y,v 為7 ,[刀 T = ??♦ y 0
.皿 .0 0

(5)

(6)
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where

話+」"讣 , 缶 = 扁2擇+•做V財，备=늘RNi

Strains are expressed as

W.x
Ey 四
J 一

rXy 气：y+气*
为Z 气并叭

and 8we is the virtu시 work of external action on the 

element.

rv „
due= &T(KJ)dV (13)

J o

Swe= SqTp(t)+ SuTb(f)dV— SuTpu dV-\-8ws

where 8wg is the external virtual work due to 

gyroscopic moment. Then from equation(12)
r v r v
Jo /仰dV=W心 + Jo 8uTb(t)dV (14)

_ J。8uTpu dV+ 8ws

Then from equations(9) to (12)

5 = 七(8)
7xy 吃
7yz Vtz+Wty
丄丿 wtX+utZ

where

= B2 B3 B4] . 血+§瓦,.：=1 ,2 ,3 ,4

0 0 0 0
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{&沪 fo [B]r[£][B]rfV{«(/))

={"“)+

-{8d}T^plN\TWV{qCf)} (15)

+ {Sq}Tpl^^[町]TlH2]-[H2]t[H^dV{q{ I)}

Then,

+ £ IB]7 [ £] [ B]rfV(«(/)) = />( 0 + X *[ M T{ M dlrfV

(16) 
and

In the finite element method , generic displacements 

are expressed as

{u(t)} = [Ni{q(t)) (9)

and strain vector is

{&(£)} =[剧{g(f)} (10)

Then time vaiying stress vector becomes

{演)}=[厕剧{心)} (11)

From the virtual work principal

8ue— 8we (12)

where 8ue is the strain energy of internal stresses,

[Ml= f oLMlMd，
J 0

[G] = - [H2]\H(\dV (17)

[Kl= fF[B]r[£][B]^V
Jo

Then, the finite element equation of the motion for 

the rotating web element becomes

[脚{序一0G]{Q} + [K]{g} = {/>3)} + {0p)} (18)

where [M], [G], [K], (p(t)) and (pb(t)) are mass 

matrix, gyroscopic moment matrix, stiffness matrix, 
applied force and body force vectors, respectively.

Each journal bearing can be modelled by a set of 

springs and dash pots at the journal center, as a point 
element with 3 degrees of freedom, 2 translations and 1 
rotation. In expanded form, fluid film journal bearings 

can also be idealized by two or three sets of springs and 
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dash pots at the end points of the journal, or the three points 
located equidistantly along the journal axis, respectively.

The equation of motion for the complete crankshaft 
structure can be obtained by assembling the appropriate 
element equations. This assembling is accomplished by 

relating the element coordinates to the chosen set of 
system coordinates through statements of displacement 
compatibility which insure the connectivity of the system. 

The configuration of the system equations is designed by 

generalized coordinates of order equal to the number of 

total node points of the system times the number of 
degrees of freedom per node. The finite element equation 

of motion of the crankshaft body becomes

[脚 3} —0G]{g} + [KI{g} = {&(f)} (19)

where [M],[G], and [K] are mass, gyroscopic moment, 

and stiffness matrices. They are highly banded, and the 
banded forms can be utilized to reduce the computational 
efforts. The eigenvalue problem for the system equations 
has to be solved to get critical speeds, or natural frequencies 
of the system. Algorithms for the eigenvalue problems 
of dynamic systems are abundant[8, 9].

III. Eigenvalue Problems

In practical dynamic analysis, we usually want the 
few lowest eigenvalues. We have sparse matrices with a 
great many degrees of freedom in finite element analysis, 
but the matrices are usually highly banded. In finding 
roots of the characteristic polynomial equation, there exist 
no closed form expressions for the solution if there are 
more than four roots, so all algorithms are iterative. In 

large systems such as finite element equations, the 
determinant search method can effectively be used to 
extract an eigenvalues at a tiim[7,8L In the determinant 
search method, we can find a root of the characteristic 

equation, with which the determinant vanishes. The deter
minant search method requires no special form of the 

coefficient matrices, but the determinant must be scaled 
to prevent overflow, and it is easy to miss a root. The 

subspace iteration method can be extended to get all 
eigenvalues in a specified interval, where load patterns 
should be chosen, so that a linear combination of the 
deformation patterns will probably represent important 
modes. In most of iterative methods for eigenvalues, 
prior knowledge of root distribution is required. By the 
way, the Sturm sequence property is to find the number 
of eigenvalues in an arbitrary range, and it can be 
utilized to bracket a root of the characteristic equation as 
closely as desired, combined with the determinant search 

method and other techniques such as the bisection technique.
In this study, a generalized eigenvalue algorithm based on 

the Sturm sequence property and the bisection technique 
is developed for the efficient critical analysis of spinning 

structures. The routine is numerically stable, and fully 
automatic in nature, so that no prier knowledge of root 
distribution or mode shapes is required for the eigenpr- 
oblem solution under consideration, different from most 

of iterative methods. Ihe scheme can be used in free vibration 
analysis of any type of spinning structures which include 
skew symme버 c gyroscopic moment matrix in their 
system equations. The few lowest roots in a certain range 

are isolated using the Sturm sequence property of the 
characteristic equations, and the bisection technique, which 

assures convergence, is used to get the associated roots. 
The bisection technique involves the simultaneous detennination 
of upper and lower limits of all relevant roots at any 
particular step. During such procedure successively, 
smaller bounds for the associated roots are achieved.

We have governing equations for free motions

[切{자+ [C]{a} + [K 也} = {이 (20)

Then

[r^{：Ho auH?) (기)

which is written as

Ay+By=0 (22)

When M and K are symmetric and C is skew 
symmetric, A is skew symmetric and B is symmetric, 
and both are usually hig미y banded.

Let

(23)

Then

(B+M)y=0 (24)

Let

a CD I (25)

where o)is real. Then

(A* — <wB)y=0 (26)

where A* = Ai is a Hermitian matrix. To get a 

non-trivial solution,
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det{A — B) — 0 (27)

In the eigenvalues of equation(27), <y will be in 

pairs, i，— s i，c” 2,—以 2,— 0 “where n is the 

order of M, G,and K. Then /> will be a pure imaginary 

number 1/ a)i as in equation(25), and appears in 

complex conjugate pairs. In finding roots equation(27), 

the Sturm sequence property is used to isolate the roots.

p(co)— det(A9 — tu B) = 0 (28)

Let pr( a)) denote the determinant of the leading principal 

minors of (A* — a)B). If we define /)0 = 1, then

d\ — o) (29)

where d\ is the first diagonal element. Let sQ) 

denote the number of the sequence in signs between 

successive members of the sequence {力J, for example, 

+ H------ 1- gives s= 1. If pr is zero then its sign is

taken to be that of pr_\. Then from the Sturm 

sequence property, the number of agreements in sign, 

s(4) of successive minors of the sequence {力尸(人)} is 

equal to the number of eigenvalues or roots of the 

characteristic polynomial equation which are strictly 

greater than A, Thus if we find that

s(人i)=如，sb〔2)=為+ L (3。)

it follows that there is only one eigenvalue in the 

range [为，石].After the roots in a certain range are 

isolated, they are approximated using the bisection 

technique. The algorithm developed here is efficient and 
stable for the determination of eigenvalues of the high 

speed spinning structures, which include skew symmetric 

gyroscopic moment matrices in their system equations.

IV. Results

To confirm the results, the analysis procedure is applied 

to the crankshaft of a single cylinder engine, which is 

the same as in reference[l]. Fig. 3 (a) and (b) show a 

brief sketch of the single cylinder engine crankshaft. 

The simplified discretization of the crank web is also 
shown in Fig. 3 (c). The natural frequencies of an 

engine crankshaft can be classified as in-plane and 
out-of-plane modes. Fig. 4 and 5 show the measured and 
predicted natural frequencies of in-plane and out-of-plane 

modes, respectively. Circle points represent the predicted 
natural frequencies and asterisk points represent the 

measured natural frequencies. Since a significant coincidence 

between the predicted and the measured results is shown, 

the basic procedure is confirmed.
In Fig. 6, the natural frequencies of the single cylinder 

engine crankshaft in both modes are shown. The difference 
between the modes is dependent upon the crankshaft 

geometry. In-plane and out-of-plane modes can be indepe
ndently induced in the case of planar sh찬pe crankshafts. 

When the crank webs phase three dimensionally, any 
deflection in crank throw plane may induce deflection in 

other orthogonal planes. Thus, in-plane and out-of-plane 
modes would not be induced independently.

후一AX
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Figure 3. A single cylinder engine crankshaft (a), (b) unit; mm 
and discretization of the crank web (c).
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Figure 4. In-plane mode natural frequencies.
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Figure 6. Natural frequencies of single cylinder engine 
crankshaft.

V. Conclusion

In this study, a dynamic finite element model of a 
high speed engine crankshaft is developed, taking the 
real geometry into account. For a crankshaft with wide 
webs, a specialized web element is developed. This study 

includes the effects of rotary inertia, gyroscopic moment, 
and shear. The eigenvalues are extracted based on the 
Strum sequence method. The eigenvalue solver can be 

used for the free vibration analysis of any type of high 

speed spinning structures which include symmetric mass 
and stiffness matrices and the skew symmetric gyroscopic 

matrix in the system matrices.
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