• 제목/요약/키워드: Switching Modulation

검색결과 724건 처리시간 0.022초

Random PWM 기법을 이용한 전도노이즈 저감 (A study on the Conducted Noise Reduction in Random PWM)

  • 정동효
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.154-158
    • /
    • 2006
  • The switching-mode power converter has been widely used because of its features of high efficiency and small weight and size. These features are brought by the ON-OFF operation of semiconductor switching devices. However, this switching operation causes the surge and EMI(Electromagnetic Interference) which deteriorate the reliability of the converter themselves and entire electronic systems. This problem on the surge and noise is one of the most serious difficulties in AC-to-DC converter. Random Pulse Width Modulation (RPWM) is peformed by adding a random perturbation to switching instant while output-voltage regulation of converter is performed. RPWM method for reducing conducted EMI in single switch three phase discontinuous conduction mode boost converter is presented. The more white noise is injected, the more conducted EMI is reduced. But output-voltage is not sufficiently regulated. This is the reason why carrier frequency selection topology is proposed. In the case of carrier frequency selection, output-voltage of steady state and transient state is fully regulated. A RPWM control method was proposed in order to smooth the switching noise spectrum and reduce it's level. Experimental results are verified by converter operating at 300v/1kW with $5%{\sim}30%$ white noise input. Spectrum analysis is performed on the Phase current and the CM noise voltage. The former is measured with Current Probe and the latter is achieved with LISN, which are connected to the spectrum analyzer respectively.

  • PDF

Soft-Switching Boost Chopper Type DC-DC Power Converter with a Single Auxiliary Passive Resonant Snubber

  • Nakamura Mantaro;Myoui Takeshi;Abudullh Al Mamun;Nakaoka Mutsuo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.256-260
    • /
    • 2001
  • This paper presents boost and buck and buck-boost DC-DC converter circuit topologies of high-frequency soft switching transition PWM chopper type DC-DC high power converters with a single auxiliary passive resonant snubber. In the proposed boost power converter circuits operating under a principle of ZCS turn-on and ZVS turn-off commutation schemes, the capacitor and inductor in the auxiliary passive resonant circuit works as the loss less resonant snubber. In addition to this, the switching voltage and current peak stresses as well as EMI and RFI noises can be basically reduced by this single passive resonant snubber. Moreover, it is proved that converter circuit topologies with a passive resonant snubber are capable of solving some problems of the conventional hard switching PWM processing based on high-ferquency pulse modulation operation principle. The simulation results of this converter are discussed as compared with the experimental ones. The effectiveness of this power converter with a single passive resonant snubber is verified by the 5kW experimental breadboad set up.

  • PDF

스위칭 손실 없는 보조회로를 이용한 고효율 부우스트 컨버터 설계 (A New Soft-switched PWM Boost Converter with a Lossless Auxiliary Circuit)

  • 최현칠
    • 전력전자학회논문지
    • /
    • 제11권2호
    • /
    • pp.149-158
    • /
    • 2006
  • 본 논문에서는 기존에 널리 사용되는 펄스폭 변조 (Pulse width modulation : PWM) 방식의 컨버터와 공진형 컨버터의 장점을 활용하고 단점을 보완할 수 있는 새로운 형태의 영전류 천이형 (Zero current transition : ZCT) 부우스트 컨버터를 제안한다. 제안한 회로는 기존의 PWM 부우스트 컨버터에 보조회로를 추가하여 주 스위치와 출력 다이오드의 스위칭 천이 순간에만 소프트 스위칭 조건을 제공함으로써 전체적인 동작은 기존의 부우스트 컨버터와 크게 차이가 없도록 하였다. 아울러, 보조회로에서의 부가적인 손실 역시 존재하지 않으므로 해서 고효율이 가능하게 된다. 본 논문에서는 제안한 회로의 동작을 분석하고 이를 바탕으로, 보조 회로의 소자값 결정에 도움이 되는 설계방식을 제공한다. 또한, 실험을 통하여 제안한 회로의 동작 원리 및 유용성을 검증하였다.

A Modularized Equalizer for Supercapacitor Strings in Hybrid Energy Storage Systems

  • Gao, Zhigang;Jiang, Fenlin
    • Journal of Power Electronics
    • /
    • 제16권4호
    • /
    • pp.1469-1482
    • /
    • 2016
  • In hybrid energy storage systems, supercapacitors are usually connected in series to meet the required voltage levels. Equalizers are effective in prolonging the life of hybrid energy storage systems because they eliminate the voltage imbalance on cells. This study proposes a modularized equalizer, which is based on a combination of a half-bridge inverter, an inductor, and two auxiliary capacitors. The proposed equalizer inherits the advantages of inductor-based equalization systems, but it also offers unique merits, such as low switching losses and an easy-to-use control algorithm. The zero-voltage switching scheme is analyzed, and the power model is established. A fixed-frequency operation strategy is proposed to simplify the control and lower the cost. The switching patterns and conditions for zero-voltage switching are discussed. Simulation results based on PSIM are presented to verify the validity of the proposed equalizer. An equalization test for two supercapacitor cells is performed. An experimental hybrid energy storage system, which consists of batteries and supercapacitors, is established to verify the performance of the proposed equalizer. The analysis, simulation results, and experimental results are in good agreement, thus indicating that the circuit is practical.

Non-equal DC link Voltages in a Cascaded H-Bridge with a Selective Harmonic Mitigation-PWM Technique Based on the Fundamental Switching Frequency

  • Moeini, Amirhossein;Iman-Eini, Hossein;Najjar, Mohammad
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.106-114
    • /
    • 2017
  • In this paper, the Selective Harmonic Mitigation-PWM (SHM-PWM) method is used in single-phase and three-phase Cascaded H-Bridge (CHB) inverters in order to fulfill different power quality standards such as EN 50160, CIGRE WG 36-05, IEC 61000-3-6 and IEC 61000-2-12. Non-equal DC link voltages are used to increase the degrees of freedom for the proposed SHM-PWM technique. In addition, it will be shown that the obtained solutions become continuous and without sudden changes. As a result, the look-up tables can be significantly reduced. The proposed three-phase modulation method can mitigate up to the 50th harmonic from the output voltage, while each switch has just one switching in a fundamental period. In other words, the switching frequency of the power switches are limited to 50 Hz, which is the lowest switching frequency that can be achieved in the multilevel converters, when the optimal selective harmonic mitigation method is employed. In single-phase mode, the proposed method can successfully mitigate harmonics up to the 50th, where the switching frequency is 150 Hz. Finally, the validity of the proposed method is verified by simulations and experiments on a 9-level CHB inverter.

Utility-Connected Solar Power Conditioner Using Edge-Resonant Soft Switching Duty Cycle Sinewave Modulated Inverter Link

  • Ogura, Koki;Chandhaket, Srawouth;Nakaoka, Mutsuo;Terai, Haruo;Sumiyoshi, Shinichiro;Kitaizumi, Takeshi;Omori, Hideki
    • Journal of Power Electronics
    • /
    • 제2권3호
    • /
    • pp.181-188
    • /
    • 2002
  • The utility interfaced sinewave modulation Inverter for the solar photovoltaic power conditioner with a high frequency transformer is presented for residential applications. As compared with the conventional full-bridge hard switching slnewave PWM inverter with a high frequency link, the simplest single-ended edge-resonant soft switching sinewave inverter with a sinewave duty cycle pulse control scheme is implemented, resulting in size and weight reduction, low cost and high efficiency This paper presents a prototype system of the sinewave zero voltage soft switching sinewave inverter for solar power conditioner, along with its operating principle and unique features. In addition to these, this paper discusses a control implementation to deliver high quality output current. Major design of each component and the power loss analysis under actual power processing is also discussed and evaluated from an experimental point of view A newly developed utility-connected sinewave power conditioning circuit which achieves 92.5% efficiency under 4kW output is demonstrated.

Analysis, Design and Implementation of a Soft Switching DC/DC Converter

  • Lin, Bor-Ren
    • Journal of Power Electronics
    • /
    • 제13권1호
    • /
    • pp.20-30
    • /
    • 2013
  • This paper presents a soft switching DC/DC converter for high voltage application. The interleaved pulse-width modulation (PWM) scheme is used to reduce the ripple current at the output capacitor and the size of output inductors. Two converter cells are connected in series at the high voltage side to reduce the voltage stresses of the active switches. Thus, the voltage stress of each switch is clamped at one half of the input voltage. On the other hand, the output sides of two converter cells are connected in parallel to achieve the load current sharing and reduce the current stress of output inductors. In each converter cell, a half-bridge converter with the asymmetrical PWM scheme is adopted to control power switches and to regulate the output voltage at a desired voltage level. Based on the resonant behavior by the output capacitance of power switches and the transformer leakage inductance, active switches can be turned on at zero voltage switching (ZVS) during the transition interval. Thus, the switching losses of power MOSFETs are reduced. The current doubler rectifier is used at the secondary side to partially cancel ripple current. Therefore, the root-mean-square (rms) current at output capacitor is reduced. The proposed converter can be applied for high input voltage applications such as a three-phase 380V utility system. Finally, experiments based on a laboratory prototype with 960W (24V/40A) rated power are provided to demonstrate the performance of proposed converter.

Implementation of Multilevel Boost DC-Link Cascade based Reversing Voltage Inverter for Low THD Operation

  • Rao, S. Nagaraja;Kumar, D.V. Ashok;Babu, Ch. Sai
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1528-1538
    • /
    • 2018
  • In this paper, configuration of $1-{\phi}$ seven-level boost DC-link cascade based reversing voltage multilevel inverter (BDCLCRV MLI) is proposed for uninterrupted power supply (UPS) applications. It consists of three level boost converter, level generation unit and full bridge circuit for polarity generation. When compared with conventional boost cascaded H-bridge MLI configurations, the proposed system results in reduction of DC sources, reduced power switches and gate drive requirements. Inverter switching is accomplished by providing appropriate switching angles that is generated by any optimization switching angle techniques. Here, round modulation control (RMC) method is taken as the optimization method and switching angles are derived and the same is compared with various switching angles methods i.e., equal-phase (EP) method, and half-equal-phase (HEP) method which results in improved quality of obtained AC power with lowest total harmonic distortion (THD). Reduction in DC sources and switch count makes the system more cost effective. A simulation and prototype model of $1-{\phi}$ seven-level BDCLCRV MLI system is developed and its performance is analyzed for various operating conditions.

Experimental Validation of a Cascaded Single Phase H-Bridge Inverter with a Simplified Switching Algorithm

  • Mylsamy, Kaliamoorthy;Vairamani, Rajasekaran;Irudayaraj, Gerald Christopher Raj;Lawrence, Hubert Tony Raj
    • Journal of Power Electronics
    • /
    • 제14권3호
    • /
    • pp.507-518
    • /
    • 2014
  • This paper presents a new cascaded asymmetrical single phase multilevel converter with a lower number of power semiconductor switches and isolated DC sources. Therefore, the number of power electronic devices, converter losses, size, and cost are reduced. The proposed multilevel converter topology consists of two H-bridges connected in cascaded configuration. One H-bridge operates at a high frequency (high frequency inverter) and is capable of developing a two level output while the other H-bridge operates at the fundamental frequency (low frequency inverter) and is capable of developing a multilevel output. The addition of each power electronic switch to the low frequency inverter increases the number of levels by four. This paper also introduces a hybrid switching algorithm which uses very simple arithmetic and logical operations. The simplified hybrid switching algorithm is generalized for any number of levels. The proposed simplified switching algorithm is developed using a TMS320F2812 DSP board. The operation and performance of the proposed multilevel converter are verified by simulations using MATLAB/SIMULINK and experimental results.

A Secondary Resonance Soft Switching Half Bridge DC-DC Converter with an Inductive Output Filter

  • Chen, Zhang-yong;Chen, Yong
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1391-1401
    • /
    • 2017
  • In this paper, a secondary resonance half-bridge dc-dc converter with an inductive output filter is presented. The primary side of such a converter utilizes asymmetric pulse width modulation (APWM) to achieve zero-voltage switching (ZVS) of the switches, and clamps the voltage of the switch to the input voltage. In addition, zero current switching (ZCS) of the output diode is achieved by a half-wave rectifier circuit with a filter inductor and a resonant branch in the secondary side of the proposed converter. Thus, the switching losses and diode reverse-recovery losses are eliminated, and the performance of the converter can be improved. Furthermore, an inductive output filter exists in the converter reduce the output current ripple. The operational principle, performance analysis and design equation of this converter are given in this paper. The analysis results show that the output diode voltage stress is independent of the duty cycle, and that the voltage gain is almost linear, similar to that of the isolation Buck-type converter. Finally, a 200V~380V input, 24V/2A output experimental prototype is built to verify the theoretical analysis.