• 제목/요약/키워드: Sustainable ecological wetland

검색결과 35건 처리시간 0.017초

자유수면형 인공습지 환경·생태공원 설계 -생태적 수질정화비오톱 공원의 구조설계를 중심으로- (A Study on Constructed Wetland Ecological Park Design with Multiple-cell FWS Layout -focus on Structural Design of Sustainable Structured wetland Biotope(SSB) Park-)

  • 변우일
    • 한국환경복원기술학회지
    • /
    • 제9권5호
    • /
    • pp.1-9
    • /
    • 2006
  • The purpose of this study is to make a design guideline in designing constructed wetland which can treat water quality both of point and nonpoint source water pollution. It focuses on structural aspects of two case studies of constructed wetland applying SSB(Sustainable Structured wetland Biotope) system in Korea. The constructed wetland of Lake Ju-am which was constructed in 2002 by Environmental Management Corporation, was designed by applying SSB system. It shows higher removal efficiency than expected - 56% of BOD removal efficiency, 60% of T-N removal, and 76% of T-P removal efficiency. In two cases, total wetland areal extents were calculated referred to treatment efficiency. The system is consist of micro-cell structures : inflow channel, forebay, multiple wetland cells and micro-pool. When designing constructed wetland appropriate in local area, the total organic system of vertical and horizontal structure : geology, hydrology, land use, and ecological surroundings of the sites should be considered totally.

하수처리수의 재이용을 위한 처리습지 및 도시 상류하천 생태환경복원 - 공주시 제민천 생태적수질정화비오톱을 중심으로 - (An Ecological Restoration of Treatment Wetland and Urban Upper Stream for Reusing Sewage Treatment Water - In the case of Sustainable Structured Wetland Biotop System at Upper Part of Jaemin Stream in Gongju-si, Korea -)

  • 변찬우
    • 한국환경복원기술학회지
    • /
    • 제17권5호
    • /
    • pp.65-77
    • /
    • 2014
  • The ecosystem of Jaemin stream, flowing into the center of Gongju-si, had been damaged by low water quality and lack of water quantity of the steam. However, after applying the SSB (Sustainable Structured wetland Biotop) system to the flood plain and the upstream of Jaemin stream, the efficiency of ecological water purification and ecological restoration are as follows. Through the constant maintenance and monitoring from year 2009 to year 2013 after restorative design and construction the average influent concentration of BOD5 was 4.2 mg/L, and the average effluent concentration was 1.8 mg/L, reaching ecological water purification rate of 57%. As for the T-N, the average influent concentration was 9.983 mg/L, and the average effluent concentration was 6.303 mg/L, showing the rate of 37%. For the T-P, the average influent concentration was 0.198 mg/L, and the average effluent concentration was 0.098 mg/L, being the rate of 51%. The vegetation of Jaemin stream monitored for 2 years after the restoration was composed of 51 species in 28 families which show high ratio of planted native species. As for the animals in the site, 5 species in 3 families of reptiles and amphibians, 34 species of 23 families of birds, and 3 species in 2 families of mammals were monitored, indicating that the bio-diversity of the site has improved, as well.

분산형 저류지 생태환경복원 설계 - 신정3지구 생태환경저류지에 적용된 생태적수질정화비오톱(SSB)시스템을 중심으로 - (A Design for Ecological and Environmental Restoration of a Dispersal Detention System - a Case of Sustainable Structured wetland Biotop (SSB) System Applied to Ecological and Environmental Detention in the Housing District of Sinjeong 3-jigu -)

  • 변찬우
    • 한국환경복원기술학회지
    • /
    • 제16권1호
    • /
    • pp.181-191
    • /
    • 2013
  • The design process of ecological and environmental detention system located in the housing district of Sinjeong 3-jigu in Seoul are as follows. At stage one, a new dispersal detention was created in the neighborhood park located near the originally planned detention. From this, the amount of storage of this dispersal detention system was enlarged from $28,337m^3/d$, the initial storage amount, to $33,606m^3/d$ as the post storage amount, responsible to the amount of rainfall which happens every 100 years. In particular, the SSB (Sustainable Structured wetland Biotop) system, which was the New Excellent Technology verified by the Ministry of Environment (No. 258) was applied to enhance ecological functioning and water quality with the detention as a constructed wetland. At stage two, the treatment plans for non-point pollutant source occurred at the initial period of rain, flowing into the detention system were built for purifying the water of the retention pond at the base of the detentions, and the water-circulation system was designed at the dispersal detentions on the period of regular rainfalls. The non-point pollutant source flowing into detention site was calculated as $11,699m^3/d$ flowing down from seven small watersheds, which occurred at the initial period of rain. In particular the SSB systems improved the average efficiency of the water processing performance to BOD 60%, SS 90%, T-N 30%, T-P 60%. At stage three, the ecological network and biological diversity were strongly considered so that it brought the residents with amenity places. In particular, the dispersal detentions were successfully designed to restore the ecological habitat of endangered plant and animal species such as narrow-mouthed.

생태복원 습지의 조성 후 식생구조 변화 (Change in the Wetland Vegetation Structure after the Ecological Restoration)

  • 김나영;송영근;이근호
    • 한국환경복원기술학회지
    • /
    • 제21권6호
    • /
    • pp.95-113
    • /
    • 2018
  • We studied the change of wetland vegetation structure to understand ecological restoration process of wetlands through the field survey of ecological restoration projects in Incheon, Iksan and Busan. We compared the vegetation plan at the time of planted with the results of the vegetation monitoring in 2018, and analyzed the changes in wetland vegetation structure. Based on results, we attempted to understand the restoration process of those wetlands and discuss the management measures for sustainable wetland restoration. As a result, in the Incheon Yeonhee restoration wetland, the number of plant species was increased, from 18 species in 2016 to 29 in 2018. The dominant species, Myriophyllum verticillatum, covered the wetland most and its occupied area was increased. On the other hand, the distribution area of the planted emergent hydrophytes was reduced. The area of open water decreased from 71.7% in 2016 to 48.8% in 2018. In Busan Igidae restoration wetland, the number of plant species was increased, from 6 species in 2014 to 31 in 2018. The dominant species was Myriophyllum verticillatum and its occupied area was increased. The area of floating plant communities that planned has decreased. The open water area decreased from 83.9% in 2014 to 31.8% in 2018. In Iksan Sorasan restoration wetland, the number of plant species was increased, from 13 species in 2016 to 36 in 2018. The dominant species was Phragmites communis Trin. and its occupied area was increased. The other planted species showed a tendency to be decreased by Phragmites communis Trin. and its terrestrialization. The open water area decreased from 86.6% in 2016 to 6.7% in 2018. These results suggest that wetlands should be managed by considering the change of vegetation structure and open water areas based on the following succession process, because it affects the habitat suitability of wetland organisms and biodiversity as well. Thus, the continuous monitoring for the ecological structure of restored wetland is important, and it could be possible step to develop sustainable wetland ecological restoration model.

매노천에서 생태적수질정화비오톱(SSB)으로 창출된 생태어도 및 홍수터 배후습지의 생태계 복원과 생태적 수질정화효과 (The Effect of Ecological Restoration and Water Purification of Ecological Fish-way and Floodplain Back Wetland Created as Sustainable Structured Wetland Biotope at Maeno Stream)

  • 변찬우;김용민
    • 환경영향평가
    • /
    • 제26권6호
    • /
    • pp.508-523
    • /
    • 2017
  • 본 연구는 매노천 생태하천복원을 위한 생태적수질정화비오톱 시스템과 생태어도(Fish-way) 등의 적용 대상지를 중심으로 생태하천 복원 전 후를 모니터링하였다. 어류는 복원전 서식이 확인되지 않았던 생태적수질정화비오톱 습지에서 총 11종 191개체가 창출복원된 것으로 조사되었다. 특히 복원목표종인 돌마자와 참종개가 생태적수질정화비오톱 습지에서 서식함이 모니터링되어, 미소서식처와 건전한 Fish-way가 창출되었음을 확인할 수 있었다. 양서류는 복원후 활동성이 높은 3차 조사시기에 습지와 그 주변에서 다수의 참개구리 서식으로 복원되었음이 확인되었다. 포유류는 수달이 습지와 Fish-way를 서식영역으로 활용하는 것이 확인되어 환경부 멸종위기 제1급이자 천연기념물인 수달 서식지가 복원된 것으로 조사되었다. 식물상의 경우 조사지역에 출현하는 관속식물은 복원 전 총 7과 13종, 복원직후 15과 19종, 복원후 총 22과 33종으로 증가되었다. 복원후 식생은 달뿌리풀 군락 등의 다양한 생태계의 기초생산자이자 수질정화에 기여하는 식재종인 정수식물군락이 형성된 것으로 조사되었다. 수질 모니터링 결과, 평균적으로 BOD 64.3%, T-N 47.2%, T-P 80.7%의 처리효율을 나타내었다. 생태계를 교란하는 제한요인(limiting factor)이 되는 비점오염원이 성공적으로 처리됨으로써 I, II등급수질에 서식하는 목표종이 창출적으로 복원되었다.

멸종위기종 서식처에 조성된 생태적 수질정화 비오톱 시스템의 수질정화 및 생태복원 효과 - 금개구리 서식처인 안터 저수지 생태공원 사례를 중심으로 - (Water Purification and Ecological Restoration Effects of Sustainable Structured Wetland Biotop (SSB) System Established in the Habitat of the Endangered Species -Exemplified by An-teo Reservior Ecological Park in the Habitat of the Gold-spotted Pond Frog -)

  • 변찬우
    • 한국환경복원기술학회지
    • /
    • 제13권6호
    • /
    • pp.145-159
    • /
    • 2010
  • A Sustainable Structured wetland Biotop (SSB) system was planned, designed, and finally constructed, and maintained in the An-teo Reservoir ecological park, which is the habitat of the endangered Gold-spotted Pond Frog. The system purifies polluted water of An-teo Reservoir which flows from up to bottom within the system. Water was sampled once a month at the inlet and at the outlet from December, 2009 to August, 2010. BOD5, SS, T-N and T-P were analyzed. Average influent and effluent BOD5 concentration was 2.9 and 1.0 mg/L, respectively, and BOD5 removal was 67%. SS concentration of influent and effluent averaged 18.1 mg/L and 2.5 mg/L, respectively, and SS abatement amounted to 86%. Average influent and effluent T-N concentration was 0.426 mg/L and 0.147 mg/L, respectively, and T-N retention was 66%. T-P concentration of influent and effluent averaged 0.071 mg/L and 0.022 mg/L, respectively, and T-P removal amounted to 68%. Plant and frog species of the system were monitored during the period. Amphibia and reptiles provided 7 species and 4 families including the Endangered Gold-Spotted Pond Frog (Rana chosenica ) which also lives in the system. Twenty-six plant species were naturally introduced into the system, however, they didn't make up a significant portion of the plant populations compared with the planted species. The endangered plants, Bladderwort (Utricularia vulgaris var. japonica ) and Euryale ferox were observed in An-teo Reservoir as well as in the system.

신불산 고산 습지의 생태적 특성과 관리방안 연구 (Management Program and Ecological Characteristics of Forest Wetlands located at Sinbul Mountain)

  • 이기철;남정칠
    • 한국습지학회지
    • /
    • 제10권2호
    • /
    • pp.1-14
    • /
    • 2008
  • 본 연구에서는 신불산 고산 습지의 식물상 생태조사 결과를 중심으로 지속가능한 습지 생태계 관리와 : 현명한 이용방안을 수립하였다. 총 167종의 식물이 동정되었으며, 그 중 고산 습지식물인 진퍼리새가 우점종으로 규명되었고, 한국특산종인 개족도리, 감소추세종인 끈끈이주걱, 이삭귀개 등이 분포하고 있어 보존의 가치가 높다. 신불산 고산습지 습지 생태계를 보호하기 위해 국가 습지보호지역으로 지정, 습지 보호를 위한 감시 및 단속활동, 지속적인 모니터링 및 현명한 관리를 위한 다양한 방안을 모색하였다.

  • PDF

저류지 생태공원 설계모형 개발에 관한 연구 (A Study on the Development of Design Model of Ecological Park as Stormwater Storage Facilities)

  • 변우일
    • 한국환경복원기술학회지
    • /
    • 제9권3호
    • /
    • pp.1-16
    • /
    • 2006
  • The purpose of this study is to develop design model of ecological park as stormwater storage facilities. The results are as follows : First, the design model of ecological park as stormwater storage facilities consider ecological and landscape characteristics such as high efficiency of land use, function as disaster prevention, ecological water purification, formation of habitat for flora and fauna. Second, this study demonstrates two types of plane structure and eight types of designed section. They can be combined and designed depending on conditions of each site. The facilities of stormwater storage conduct disaster prevention system and ecological park. Retention pond in stormwater storage facilities for ecological park also should be made for ecological restoration in the site. Third, the ecological park provide the basis for ecological network from in-site to out-site. Therefore its conservation and restoration plan consider the ecosystems of the site. Fourth, the most important factor for maintenance and management for retention pond is keeping water quality. Sustainable Structured wetland Biotop system is suggested for ecological water purification system in the retention pond which is one of the constructed wetland system using multi-celled aquatic plant and pond. This system can also provide habitat for animals and plants, water friendly park for men, and beautiful landscape.

을숙도 생태공원내 서식지별 환경요인과 갈대분포 특성 (Environmental Factors and Phragmites Distribution at Various Habitats in Eulsukdo Ecological Park)

  • 정용현;성기준;강대석;이석모;박소영
    • 한국환경복원기술학회지
    • /
    • 제11권3호
    • /
    • pp.50-61
    • /
    • 2008
  • Environmental factors and phragmites growth properties at various habitats in Eulsukdo ecological park were investigated to understand major factors affecting phragmites distribution in constructed wetlands. Although phragmites is very important species in wetland ecosystem, it should be controlled to prevent excessive expansion within the restricted park area. The results showed that phragmites dominant sites have the highest LAI among other emerged plants habitats and could adversely affect for waders habitats. Phragmites were also found at the areas with wide ranges of water-depth than other plants, and showed phragmites could be favored for occupying the newly constructed wetlands like Eulsukdo ecological park. The results showed difference in soil redox potential between phragmites dominant and non-dominant sites. Because soil redox potential is affected by wetland hydrology like flooding duration, control of wetland hydrology should be considered for creation and management of constructed wetlands. The results also showed that differences in soil cation exchange capacity, soil salinity, soil organic matter content and site inclination between phragmites dominant and non-dominant sites as well as brackish and freshwater areas. Those abiotic factors can be important considerations for the sustainable wetland management especially for the phragmitest managements in the ecological park.

생태계 서비스 지불제 도입 후 조류 먹이원 분석 및 관리 방안: 고양 장항습지를 대상으로 (The Analysis of Avian Feed Source and Management Direction after the Introduction of Payments for Ecosystem Services: A Case Study of Janghang Wetland in Goyang)

  • 최현아;김은정;이은정;정인숙;한동욱
    • 한국습지학회지
    • /
    • 제26권3호
    • /
    • pp.219-226
    • /
    • 2024
  • 생태계를 보호하고 생태계적 가치를 증진하기 위해 생태계서비스지불제(Payment for Ecosystem Services, PES)가 강조되고 있다. 그러나 PES 시행과 정책의 효과적인 실행을 위해 필요한 생태계 모니터링과 연구는 부족한 상황이다. 이에 본 연구는 장항습지에서 시행 중인 PES의 효과를 분석하여 서식지 관리 방안을 제시하였으며, 이때 이동성 조류 모니터링과 주요 종의 먹이원을 분석하였다. 장항습지에서 관찰된 우점 조류로는 괭이갈매기, 청둥오리, 쇠기러기 등이 있으며, 이들의 주요 먹이원은 참새귀리, 개보리 등의 벼과 식물과 속속이풀 등 십자화과 식물로 분석되었다. 또한 PES를 통해 장항습지 내에서 볍씨 공급이 이루어지고 있으며, 재두루미, 큰기러기, 쇠기러기 등의 조류가 이를 이용하고 있다는 결과가 관찰되었다. 장항습지의 지속 가능한 관리를 위해 먹이 공급 시스템 개선과 재두루미 및 기러기류(큰기러기, 쇠기러기)에 대한 분산 공급 방안을 모색해야 한다. 이때, 농업 및 개발 지역과의 경계를 관리하여 생태적 연결성을 강화해야 한다. 본 연구에서는 이동성 조류의 서식지로서 장항 습지의 생태적 중요성을 재확인하였다. 또한, 이들 결과는 향후 정책 수립과 지속 가능한 보전을 위한 기초 자료로 활용될 수 있는 의의를 갖는다.