• Title/Summary/Keyword: Survival proteins

Search Result 406, Processing Time 0.027 seconds

Detection and Prognostic Analysis of Serum Protein Expression in Esophageal Squamous Cell Cancer

  • Jiang, Hong;Wang, Xiao-Hong;Yu, Xin-Min;Zheng, Zhi-Guo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1579-1582
    • /
    • 2012
  • Objective: To assess differences in serum proteins in esophageal squamous cell carcinoma patients. Methods: 144 esophageal squamous cell carcinoma patients and 50 healthy volunteers were included in this study, with surface-enhanced laser desorption-ionization time-of-flight mass spectrometry and weak cation exchange magnetic beads. Follow-up allowed the relations between serum proteins and prognosis to be analyzed. Results: A total of 93 protein peaks were detected (molecular weight range: 1500-30000), 10 demonstrating statistically significant differences. There were no differences in protein peaks between 92 patients with a survival more than 2 years and 52 patients with survival less than 2 years. There were two significantly different protein peaks between 45 stage II patients with a survival more than 2 years and 14 stage II patients with survival less than 2 years. There was one significantly different protein peak between 22 stage III patients with a survival more than 2 years and 29 stage III patients with survival less than 2 years. Conclusion: Differences of serum proteins in esophageal squamous cell carcinoma are related to prognosis of patients. The protein fingerprint can be helpful for clinical diagnosis and treatment.

Ethanol Tolerance of Campylobacter jejuni by Ethanol Shock (Ethanol 충격에 의한 Campylobacter jejuni 의 Ethanol 내성)

  • 김치경;가익현
    • Korean Journal of Microbiology
    • /
    • v.30 no.5
    • /
    • pp.377-382
    • /
    • 1992
  • The responses of C. jejuni to ethanol shock were studied for their survival. synthesis of ethanol shock proteins, and increased survival at higher concentration of ethanol upon prior treatments of ethanol. When C. jejuni were shocked with ethanol at 1. 3. and 5% for 60. 30 and 10 minutes, respectively. those cells synthesized the ethanol shock proteins of 90, 66, 60, 45, and 24 kd in molecular weight. When the C. ,jejuni shocked with 1 and 3% ethanol were exposed to 3 and 5% ethanol for 30 minutes. their survival rates were increased by $10^1$~$10^2$ as compared with those of the cells without ethanol-shock. In the same way. C. ,jejuni shocked with 5% ethanol for 10 minutes :.bowed about 102 times higher survival rates than the cells without ethanol-shock. This result suggests that C jejuni shocked with I-5% ethanol for 10-30 minutes synthesized five kinds of ethanol shock proteins. and that the shock proteins contributed to increase ethanol tolerance for their survival at the higher concentrations of ethanol.

  • PDF

Telomerase Reverse Transcriptase Contains a BH3-Like Motif and Interacts with BCL-2 Family Members

  • Jin, Young;You, Long;Kim, Hye Jeong;Lee, Han-Woong
    • Molecules and Cells
    • /
    • v.41 no.7
    • /
    • pp.684-694
    • /
    • 2018
  • Upregulation of human telomerase reverse transcriptase (hTERT) expression is an important factor in the cellular survival and cancer. Although growing evidence suggests that hTERT inhibits cellular apoptosis by telomere-independent functions, the mechanisms involved are not fully understood. Here, we show that hTERT contains a BH3-like motif, a short peptide sequence found in BCL-2 family proteins, and interacts with anti-apoptotic BCL-2 family proteins MCL-1 and BCL-xL, suggesting a functional link between hTERT and the mitochondrial pathway of apoptosis. Additionally, we propose that hTERT can be categorized into the atypical BH3-only proteins that promote cellular survival, possibly due to the non-canonical interaction between hTERT and antiapoptotic proteins. Although the detailed mechanisms underlying the hTERT BH3-like motif functions and interactions between hTERT and BCL-2 family proteins have not been elucidated, this work proposes a possible connection between hTERT and BCL-2 family members and reconsiders the role of the BH3-like motif as an interaction motif.

Transciptomic Analysis of Larval Fat Body of Plutella xylostella under Low Temperature (저온조건에서 배추좀나방(Plutella xylostella) 지방체 유전자 발현 변화)

  • Kim, Kwang-Ho;Lee, Dae-Weon
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.296-306
    • /
    • 2019
  • BACKGROUND: Temperature is known to be the main factor affecting development, growth and reproduction of organisms and also a physical factor directly related to insect survival. Insects as ectothermal species should be responsive to climate changes for their survival and develop various survival strategies under the unfavorable temperature such as low temperature. The purpose of this study is to identify genes contributing to adaptation of low temperature. METHODS AND RESULTS: To identify genes contributing to adaptation of low temperature, the transcriptomic data were obtained from fat body in Plutella xyostella larvae via next generation sequencing. We identified structural proteins, heat shock proteins, antioxidant enzymes, detoxification proteins, and cryoprotectant mobilization and biosynthesis-related proteins. Genes encoding chitinase, cuticular protein, Hsp23, chytochrome protein, Glutathione S transferase, and phospholipase 2 were up-regulated under low temperature. Proteins related to energy metabolism such as UDP-glycosy ltransferase, trehalase and trehalose transporter were down-regulated. CONCLUSION: When insect pests were exposed to low temperature, changes in gene expression of fat body could provide some hints for understanding temperature adaptation strategies.

Effects of specific monoclonal antibodies to dense granular proteins on the invasion of Toxoplasma gondii in vitro and in vivo

  • Cha, Dong-Yeob;Song, In-Kwan;Lee, Gye-Sung;Hwang, Ok-Sun;Noh, HyungJun;Yeo, Seung-Dong;Shin, Dae-Whan;Lee, Young-Ha
    • Parasites, Hosts and Diseases
    • /
    • v.39 no.3
    • /
    • pp.233-240
    • /
    • 2001
  • Although some reports have been published on the protective effect of antibodies to Toxoplasma gondii surface membrane proteins, few address the inhibitory activity of antibodies to dense granular proteins (GRA proteins) . Therefore, we performed a series of experiments to evaluate the inhibitory effects of monoclonal antibodies (mAbs) to GRA proteins (GRA2, 28 kDa; GRA6, 32 kDa) and surface membrane protein (SAGI, 30 kDa) on the invasion of T. gondii tachyzoites. Passive immunization of mice with one of three mAbs following challenge with a lethal dose of tachyzoites significantly increased survival compared with results for mice treated with control ascites. The survival times of mice challenged with tachyzoties pretreated with anti-GRA6 or anti-SAG 1 mAb were significantly increased. Mice that received tachyzoties pretreated with both mAb and complement had longer survival times than those that received tachyzoites pretreated with mAb alone. Invasion of tachyzoites into fibroblasts and macrophages was significantly inhibited in the anti-GRA2, anti-GRA6 or anti-SAG 1 mAb pretreated group. Pretreatment with mAb and complement inhibited invasion of tachyzoites in both fibroblasts and macrophages. These results suggest that specific antibodies to dense-granule molecules may be useful for controlling infection with T. gondii.

  • PDF

Modulation of Life and Death by the Tumor Necrosis Factor Receptor-Associated Factors (TRAFs)

  • Lee, Na-Kyung;Lee, Soo-Young
    • BMB Reports
    • /
    • v.35 no.1
    • /
    • pp.61-66
    • /
    • 2002
  • The TNF receptor-associated factor (TRAF) family is a group of adapter proteins that link a wide variety of cell surface receptors. Including the TNF and IL-1 receptor superfamily to diverse signaling cascades, which lead to the activation of NF-${\kappa}B$ and mitogen-activated protein kinases. In addition, TRAFs interact with a variety of proteins that regulate receptor-induced cell death or survival. Thus, TRAF-mediated signals may directly induce cell survival or interfere with the death receptor-induced apoptosis.

Production of Stress Shock Proteins DnaK and GroEL in Burkholderia cepacia YK-2 by Phenoxyherbicide 2,4-Dichlorophenoxyacetic Acid as an Environmental Contaminant (Burkholderia cepacia YK-2에서 페녹시계 제초제 2,4-Dichlorophenoxyacetic Acid에 의한 스트레스 충격 단백질 DnaK와 GroEL의 생성)

  • Cho, Yun-Seok;Park, Sang-Ho;Kim, Chy-Kyung;Oh, Kye-Heon
    • Korean Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.270-276
    • /
    • 1999
  • Production of stress shock proteins in Burkholderia cepacia YK-2 in response to the phenoxyherbicide 2,4-dichlorophenoxyacetic acid(2,4-D) as an environmental contaminant was investrigated. The stress schock proteins were synthesized at different 2,4-D concentrations in exponentially growing cultures of B. capacia YK-2. This response involved the production of 43kDa and 41kDa GroEL proteins. The proteins were characterized by SDS-PAGE and Western blot using the anti-DnaK nad anti-GroEL monoclonal antibodies. Total stress shock proteins were analyzed by 2-D PAGE. Survival of B. cepacia YK-2 with time in the presence of different concentrations of 2,4-D was monitored, and viable counts paralleled the production of the stress shock proteins in this bacterium.

  • PDF

Synthesis and thermotolerance of heat shock proteins in campylobacter jejuni (Campylobacter jejuni에서 고온충격 단백질의 합성과 내열성)

  • 김치경;김현옥;이길재
    • Korean Journal of Microbiology
    • /
    • v.29 no.1
    • /
    • pp.49-55
    • /
    • 1991
  • The heat shock responses of Campylobacter jejuni were studied by examination of their survival rates and synthesis of heat shocd proteins. When C. jejuni cells were treated at the sublethal temperatures of 48.deg.C for 30 minutes, most of the cells maintained their viabilities and synthesized the heat shock proteins of 90, 73, and 66 kD in molecular weight. By the method of two-dimensional electrophoresis, the heat shock proteins of C. jejuni were identified to be Hsp90, Hsp73, and Hsp66. During the heat shock at 48.deg.C, the heat shock proteins were induced from about 5 minutes after the heat shock treatment. Their synthesis was continued upto 30 minutes, but remarkably retarded after 50 minutes. When C. jejune cells were heat shocked at 51.deg.C for 30 minutes, the survival rates of the cells were decreased by about $10^{3}$ fold and synthesis of heat shock proteins and normal proteins was also generally retarded. The cells exposed to 55.deg.C for 30 minutes died off by more than $10^{5}$ cells and the new protein synthesis was not observed. But when C. jejuni cells were heat-shocked at the sublethal temperature of 48.deg.C for 15 to 20 minutes and then were exposed at the lethal temperature of 55.deg.C for 30 minutes, their viabilities were higher than those exposed at 55.deg.C for 30 minutes without pre-heat shock at 48.deg.C. Therefore, the heat shock proteins synthesized at the sublethal temperature of 48.deg.C in C. jejuni were thought to be responsible for thermotolerance. However, when C. jejuni cells heat-shocked at various ranges of sublethal and lethal temperatures were placed back to the optimum temperature of 42.deg.C, the multiplication patterns of the cells pretreated at different temperatures were not much different each other.

  • PDF

Functional annotation of uncharacterized proteins from Fusobacterium nucleatum: identification of virulence factors

  • Kanchan Rauthan;Saranya Joshi;Lokesh Kumar;Divya Goel;Sudhir Kumar
    • Genomics & Informatics
    • /
    • v.21 no.2
    • /
    • pp.21.1-21.14
    • /
    • 2023
  • Fusobacterium nucleatum is a gram-negative bacteria associated with diverse infections like appendicitis and colorectal cancer. It mainly attacks the epithelial cells in the oral cavity and throat of the infected individual. It has a single circular genome of 2.7 Mb. Many proteins in F. nucleatum genome are listed as "Uncharacterized." Annotation of these proteins is crucial for obtaining new facts about the pathogen and deciphering the gene regulation, functions, and pathways along with discovery of novel target proteins. In the light of new genomic information, an armoury of bioinformatic tools were used for predicting the physicochemical parameters, domain and motif search, pattern search, and localization of the uncharacterized proteins. The programs such as receiver operating characteristics determine the efficacy of the databases that have been employed for prediction of different parameters at 83.6%. Functions were successfully assigned to 46 uncharacterized proteins which included enzymes, transporter proteins, membrane proteins, binding proteins, etc. Apart from the function prediction, the proteins were also subjected to string analysis to reveal the interacting partners. The annotated proteins were also put through homology-based structure prediction and modeling using Swiss PDB and Phyre2 servers. Two probable virulent factors were also identified which could be investigated further for potential drug-related studies. The assigning of functions to uncharacterized proteins has shown that some of these proteins are important for cell survival inside the host and can act as effective drug targets.

Toxic Effects of Catechol and 4-Chlorobenzoate Stresses on Bacterial Cells

  • Park, Sang-Ho;Ko, Yeon-Ja;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.206-212
    • /
    • 2001
  • Catechol and 4-chlorobenzoate (4CBA) which are produced from the biodegradation of a variety of aromatic and chloroaromatics have been recognized as toxic to living organisms. In this study, the toxic effects of catechol and 4-chlorobenzoate on gram-positive and -negative bacteria were examined in terms of survival, morphology, change in fatty acids and membrane protein composition. The survival rate of the organisms during treatment for 6 h was decreased, as the concentration of each aromatic was increased. Escherichia coli and Pseudomonas cells treated with catechol and 4CBA at concentrations causing a significant decrease in their viability, showed destructive openings in their cell envelopes. Bacills subtilis treated with the aromatics were reduced in cell size and Staphylococcus aureus cells displayed irregular rod shapes with wrinkled surfaces. The bacterial cells treated with 20 mM catechol showed increases in unsaturated fatty acids, but several saturated fatty acids were decreased. In the E. coli cells treated with 20 mM catechol, inner membrane proteins of 150 kDa and 105 kDa were decreased. But several kinds of the inner and outer membrane proteins were increased. In B. subtilis treated with 20 mM catechol, several kinds of proteins were increased or decreased in membrane proteins.

  • PDF