Browse > Article
http://dx.doi.org/10.14348/molcells.2018.0206

Telomerase Reverse Transcriptase Contains a BH3-Like Motif and Interacts with BCL-2 Family Members  

Jin, Young (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
You, Long (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
Kim, Hye Jeong (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
Lee, Han-Woong (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
Abstract
Upregulation of human telomerase reverse transcriptase (hTERT) expression is an important factor in the cellular survival and cancer. Although growing evidence suggests that hTERT inhibits cellular apoptosis by telomere-independent functions, the mechanisms involved are not fully understood. Here, we show that hTERT contains a BH3-like motif, a short peptide sequence found in BCL-2 family proteins, and interacts with anti-apoptotic BCL-2 family proteins MCL-1 and BCL-xL, suggesting a functional link between hTERT and the mitochondrial pathway of apoptosis. Additionally, we propose that hTERT can be categorized into the atypical BH3-only proteins that promote cellular survival, possibly due to the non-canonical interaction between hTERT and antiapoptotic proteins. Although the detailed mechanisms underlying the hTERT BH3-like motif functions and interactions between hTERT and BCL-2 family proteins have not been elucidated, this work proposes a possible connection between hTERT and BCL-2 family members and reconsiders the role of the BH3-like motif as an interaction motif.
Keywords
apoptosis; BH3-like motif; BCL-2 family proteins; hTERT;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zha, J., Harada, H., Osipov, K., Jockel, J., Waksman, G., and Korsmeyer, S.J. (1997). BH3 domain of BAD is required for heterodimerization with BCL-XL and pro-apoptotic activity. J. Biol. Chem. 272, 24101-24104.   DOI
2 Zhang, Z., Yu, L., Dai, G., Xia, K., Liu, G., Song, Q., Tao, C., Gao, T., and Guo, W. (2017). Telomerase reverse transcriptase promotes chemoresistance by suppressing cisplatin-dependent apoptosis in osteosarcoma cells. Sci. Rep. 7, 7070.   DOI
3 Mandal, M., and Kumar, R. (1997). Bcl-2 modulates telomerase activity. J. Biol. Chem. 272, 14183-14187.   DOI
4 Massard, C., Zermati, Y., Pauleau, A.L., Larochette, N., Metivier, D., Sabatier, L., Kroemer, G., and Soria, J.C. (2006). hTERT: a novel endogenous inhibitor of the mitochondrial cell death pathway. Oncogene 25, 4505-4514.   DOI
5 Perciavalle, R.M., Stewart, D.P., Koss, B., Lynch, J., Milasta, S., Bathina, M., Temirov, J., Cleland, M.M., Pelletier, S., Schuetz, J.D., et al. (2012). Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration. Nat. Cell Biol. 14, 575-583.   DOI
6 Matsunaga, K., Saitoh, T., Tabata, K., Omori, H., Satoh, T., Kurotori, N., Maejima, I., Shirahama-Noda, K., Ichimura, T., Isobe, T., et al. (2009). Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat. Cell Biol. 11, 385-396.   DOI
7 Moldoveanu, T., Follis, A.V., Kriwacki, R.W., and Green, D.R. (2014). Many players in BCL-2 family affairs. Trends Biochem. Sci. 39, 101-111.   DOI
8 Nijhawan, D., Fang, M., Traer, E., Zhong, Q., Gao, W., Du, F., and Wang, X. (2003). Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes Dev. 17, 1475-1486.   DOI
9 Rahman, R., Latonen, L., and Wiman, K.G. (2005). hTERT antagonizes p53-induced apoptosis independently of telomerase activity. Oncogene 24, 1320-1327.   DOI
10 Reed, J.C. (1997). Double identity for proteins of the Bcl-2 family. Nature 387, 773-776.   DOI
11 Maiuri, M.C., Le Toumelin, G., Criollo, A., Rain, J.C., Gautier, F., Juin, P., Tasdemir, E., Pierron, G., Troulinaki, K., Tavernarakis, N., et al. (2007b). Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J. 26, 2527-2539.   DOI
12 Schmidt, J.C., Dalby, A.B., and Cech, T.R. (2014). Identification of human TERT elements necessary for telomerase recruitment to telomeres. eLife 3.
13 Ahmed, S., Passos, J.F., Birket, M.J., Beckmann, T., Brings, S., Peters, H., Birch-Machin, M.A., von Zglinicki, T., and Saretzki, G. (2008). Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. J. Cell Sci. 121, 1046-1053.   DOI
14 Ali, M., Devkota, S., Roh, J.I., Lee, J., and Lee, H.W. (2016). Telomerase reverse transcriptase induces basal and amino acid starvation-induced autophagy through mTORC1. Biochem. Biophys. Res. Commun. 478, 1198-1204.   DOI
15 Aouacheria, A., Rech de Laval, V., Combet, C., and Hardwick, J.M. (2013). Evolution of Bcl-2 homology motifs: homology versus homoplasy. Trends Cell Biol. 23, 103-111.   DOI
16 Rodolfo, C., Mormone, E., Matarrese, P., Ciccosanti, F., Farrace, M.G., Garofano, E., Piredda, L., Fimia, G.M., Malorni, W., and Piacentini, M. (2004). Tissue transglutaminase is a multifunctional BH3-only protein. J. Biol. Chem. 279, 54783-54792.   DOI
17 Rooswinkel, R.W., van de Kooij, B., de Vries, E., Paauwe, M., Braster, R., Verheij, M., and Borst, J. (2014). Antiapoptotic potency of Bcl-2 proteins primarily relies on their stability, not binding selectivity. Blood 123, 2806-2815.   DOI
18 Santos, J.H., Meyer, J.N., Skorvaga, M., Annab, L.A., and Van Houten, B. (2004). Mitochondrial hTERT exacerbates free-radical-mediated mtDNA damage. Aging Cell 3, 399-411.   DOI
19 Saretzki, G. (2009). Telomerase, mitochondria and oxidative stress. Exp. Gerontol. 44, 485-492.   DOI
20 Shamas-Din, A., Brahmbhatt, H., Leber, B. and Andrews, D.W. (2011). BH3-only proteins: orchestrators of apoptosis. Biochim. Biophys. Acta 1813, 508-520.   DOI
21 Sharma, N.K., Reyes, A., Green, P., Caron, M.J., Bonini, M.G., Gordon, D.M., Holt, I.J., and Santos, J.H. (2012). Human telomerase acts as a hTR-independent reverse transcriptase in mitochondria. Nucleic Acids Res. 40, 712-725.   DOI
22 Shay, J.W., Zou, Y., Hiyama, E., and Wright, W.E. (2001). Telomerase and cancer. Hum. Mol. Genet. 10, 677-685.   DOI
23 Steczkiewicz, K., Zimmermann, M.T., Kurcinski, M., Lewis, B.A., Dobbs, D., Kloczkowski, A., Jernigan, R.L., Kolinski, A., and Ginalski, K. (2011). Human telomerase model shows the role of the TEN domain in advancing the double helix for the next polymerization step. Proc. Natl. Acad. Sci. USA 108, 9443-9448.   DOI
24 Cheng, H., Fan, X., Lawson, W.E., Paueksakon, P., and Harris, R.C. (2015). Telomerase deficiency delays renal recovery in mice after ischemia-reperfusion injury by impairing autophagy. Kidney Int. 88, 85-94.   DOI
25 Aouacheria, A., Combet, C., Tompa, P., and Hardwick, J.M. (2015). Redefining the BH3 Death Domain as a 'Short Linear Motif'. Trends Biochem. Sci. 40, 736-748.   DOI
26 Blackburn, E.H. (1992). Telomerases. Ann. Rev. Biochem. 61, 113-129.   DOI
27 Blasco, M.A., Lee, H.W., Hande, M.P., Samper, E., Lansdorp, P.M., DePinho, R.A., and Greider, C.W. (1997). Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25-34.   DOI
28 Boya, P., and Kroemer, G. (2009). Beclin 1: a BH3-only protein that fails to induce apoptosis. Oncogene 28, 2125-2127.   DOI
29 Cao, Y., Li, H., Deb, S., and Liu, J.P. (2002). TERT regulates cell survival independent of telomerase enzymatic activity. Oncogene 21, 3130-3138.   DOI
30 Chipuk, J.E., and Green, D.R. (2008). How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol. 18, 157-164.   DOI
31 Chipuk, J.E., Moldoveanu, T., Llambi, F., Parsons, M.J., and Green, D.R. (2010). The BCL-2 family reunion. Mol. Cell 37, 299-310.   DOI
32 Choi, Y.B., Sandford, G., and Nicholas, J. (2012). Human herpesvirus 8 interferon regulatory factor-mediated BH3-only protein inhibition via Bid BH3-B mimicry. PLoS Pathogens 8, e1002748.   DOI
33 Cole, C., Barber, J.D., and Barton, G.J. (2008). The Jpred 3 secondary structure prediction server. Nucleic Acids Res. 36, W197-201.   DOI
34 Westphal, D., Kluck, R.M., and Dewson, G. (2014). Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis. Cell Death Differ. 21, 196-205.   DOI
35 Czabotar, P.E., Lee, E.F., van Delft, M.F., Day, C.L., Smith, B.J., Huang, D.C., Fairlie, W.D., Hinds, M.G., and Colman, P.M. (2007). Structural insights into the degradation of Mcl-1 induced by BH3 domains. Proc. Natl. Acad. Sci. USA 104, 6217-6222.   DOI
36 Czabotar, P.E., Lessene, G., Strasser, A., and Adams, J.M. (2014). Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 15, 49-63.   DOI
37 Tan, K.O., Tan, K.M., Chan, S.L., Yee, K.S., Bevort, M., Ang, K.C., and Yu, V.C. (2001). MAP-1, a novel proapoptotic protein containing a BH3-like motif that associates with Bax through its Bcl-2 homology domains. J. Biol. Chem. 276, 2802-2807.   DOI
38 Thebault, S., Agez, M., Chi, X., Stojko, J., Cura, V., Telerman, S.B., Maillet, L., Gautier, F., Billas-Massobrio, I., Birck, C., et al. (2016). TCTP contains a BH3-like domain, which instead of inhibiting, activates Bcl-xL. Sci. Rep. 6, 19725.   DOI
39 Wang, T., Xue, Y., Wang, M., and Sun, Q. (2012). Silencing of the hTERT gene through RNA interference induces apoptosis via bax/bcl-2 in human glioma cells. Oncol. Rep. 28, 1153-1158.   DOI
40 Wirawan, E., Lippens, S., Vanden Berghe, T., Romagnoli, A., Fimia, G.M., Piacentini, M., and Vandenabeele, P. (2012). Beclin1: a role in membrane dynamics and beyond. Autophagy 8, 6-17.   DOI
41 Xia, J., Peng, Y., Mian, I.S., and Lue, N.F. (2000). Identification of functionally important domains in the N-terminal region of telomerase reverse transcriptase. Mol. Cell. Biol. 20, 5196-5207.   DOI
42 Xie, Z., Xiao, Z., and Wang, F. (2017). Hepatitis C virus nonstructural 5A protein (HCV-NS5A) inhibits hepatocyte apoptosis through the NF-kappab/miR-503/bcl-2 pathway. Mol. Cells 40, 202-210.
43 Yang, E., Zha, J., Jockel, J., Boise, L.H., Thompson, C.B., and Korsmeyer, S.J. (1995). Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80, 285-291.   DOI
44 Haendeler, J., Drose, S., Buchner, N., Jakob, S., Altschmied, J., Goy, C., Spyridopoulos, I., Zeiher, A.M., Brandt, U., and Dimmeler, S. (2009). Mitochondrial telomerase reverse transcriptase binds to and protects mitochondrial DNA and function from damage. Arterioscler. Thromb. Vasc. Biol. 29, 929-935.   DOI
45 Del Bufalo, D., Rizzo, A., Trisciuoglio, D., Cardinali, G., Torrisi, M.R., Zangemeister-Wittke, U., Zupi, G., and Biroccio, A. (2005). Involvement of hTERT in apoptosis induced by interference with Bcl-2 expression and function. Cell Death Differ. 12, 1429-1438.   DOI
46 Edlich, F., Banerjee, S., Suzuki, M., Cleland, M.M., Arnoult, D., Wang, C., Neutzner, A., Tjandra, N., and Youle, R.J. (2011). Bcl-x(L). retrotranslocates Bax from the mitochondria into the cytosol. Cell 145, 104-116.   DOI
47 Haendeler, J., Hoffmann, J., Brandes, R.P., Zeiher, A.M., and Dimmeler, S. (2003). Hydrogen peroxide triggers nuclear export of telomerase reverse transcriptase via Src kinase family-dependent phosphorylation of tyrosine 707. Mol. Cell. Biol. 23, 4598-4610.   DOI
48 Hardwick, J.M., and Soane, L. (2013). Multiple functions of BCL-2 family proteins. Cold Spring Harb Perspect Biol. 5, pii: a008722.
49 Harris, R.C., and Cheng, H. (2016). Telomerase, autophagy and acute kidney injury. Nephron 134, 145-148.   DOI
50 Koh, C.M., Khattar, E., Leow, S.C., Liu, C.Y., Muller, J., Ang, W.X., Li, Y., Franzoso, G., Li, S., Guccione, E., et al. (2015). Telomerase regulates MYC-driven oncogenesis independent of its reverse transcriptase activity. J. Clin. Invest. 125, 2109-2122.   DOI
51 Kvansakul, M., and Hinds, M.G. (2013). Structural biology of the Bcl-2 family and its mimicry by viral proteins. Cell Death Dis. 4, e909.   DOI
52 Landberg, G., Nielsen, N.H., Nilsson, P., Emdin, S.O., Cajander, J., and Roos, G. (1997). Telomerase activity is associated with cell cycle deregulation in human breast cancer. Cancer Res. 57, 549-554.
53 Lee, J., Sung, Y.H., Cheong, C., Choi, Y.S., Jeon, H.K., Sun, W., Hahn, W.C., Ishikawa, F., and Lee, H.W. (2008). TERT promotes cellular and organismal survival independently of telomerase activity. Oncogene 27, 3754-3760.   DOI
54 Maiuri, M.C., Criollo, A., Tasdemir, E., Vicencio, J.M., Tajeddine, N., Hickman, J.A., Geneste, O., and Kroemer, G. (2007a). BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L). Autophagy 3, 374-376.   DOI
55 Lin, C.Y., Wu, H.Y., Wang, P.L., and Yuan, C.J. (2010). Mammalian Ste20-like protein kinase 3 induces a caspase-independent apoptotic pathway. Int. J. Biochem. Cell Biol. 42, 98-105.   DOI
56 Longo, P.A., Kavran, J.M., Kim, M.S., and Leahy, D.J. (2013). Transient mammalian cell transfection with polyethylenimine (PEI). Methods Enzymol. 529, 227-240.
57 Maida, Y., Yasukawa, M., Furuuchi, M., Lassmann, T., Possemato, R., Okamoto, N., Kasim, V., Hayashizaki, Y., Hahn, W.C., and Masutomi, K. (2009). An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA. Nature 461, 230-235.   DOI
58 Hsu, Y.T., and Youle, R.J. (1997). Nonionic detergents induce dimerization among members of the Bcl-2 family. J. Biol. Chem. 272, 13829-13834.   DOI
59 Hawley, R.G., Chen, Y., Riz, I., and Zeng, C. (2012). An integrated bioinformatics and computational biology approach identifies new BH3-only protein candidates. Open Biol. J. 5, 6-16.   DOI
60 Herman, M.D., Nyman, T., Welin, M., Lehtio, L., Flodin, S., Tresaugues, L., Kotenyova, T., Flores, A., and Nordlund, P. (2008). Completing the family portrait of the anti-apoptotic Bcl-2 proteins: crystal structure of human Bfl-1 in complex with Bim. FEBS Lett. 582, 3590-3594.   DOI
61 Iglesias-Serret, D., Pique, M., Gil, J., Pons, G., and Lopez, J.M. (2003). Transcriptional and translational control of Mcl-1 during apoptosis. Arch. Biochem. Biophys. 417, 141-152.   DOI
62 Indran, I.R., Hande, M.P., and Pervaiz, S. (2011). hTERT overexpression alleviates intracellular ROS production, improves mitochondrial function, and inhibits ROS-mediated apoptosis in cancer cells. Cancer Res. 71, 266-276.
63 Jacobs, S.A., Podell, E.R., and Cech, T.R. (2006). Crystal structure of the essential N-terminal domain of telomerase reverse transcriptase. Nat. Struct. Mol. Biol. 13, 218-225.   DOI
64 Kang, H.J., Choi, Y.S., Hong, S.B., Kim, K.W., Woo, R.S., Won, S.J., Kim, E.J., Jeon, H.K., Jo, S.Y., Kim, T.K., et al. (2004). Ectopic expression of the catalytic subunit of telomerase protects against brain injury resulting from ischemia and NMDA-induced neurotoxicity. J. Neurosci. 24, 1280-1287.   DOI
65 Kim, N.W., Piatyszek, M.A., Prowse, K.R., Harley, C.B., West, M.D., Ho, P.L., Coviello, G.M., Wright, W.E., Weinrich, S.L., and Shay, J.W. (1994). Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011-2015.   DOI