Browse > Article
http://dx.doi.org/10.5338/KJEA.2019.38.4.40

Transciptomic Analysis of Larval Fat Body of Plutella xylostella under Low Temperature  

Kim, Kwang-Ho (Crop Protection Division, Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration)
Lee, Dae-Weon (Department of Life Sciences, School of Chemistry and Life Sciences, Kyungsung University)
Publication Information
Korean Journal of Environmental Agriculture / v.38, no.4, 2019 , pp. 296-306 More about this Journal
Abstract
BACKGROUND: Temperature is known to be the main factor affecting development, growth and reproduction of organisms and also a physical factor directly related to insect survival. Insects as ectothermal species should be responsive to climate changes for their survival and develop various survival strategies under the unfavorable temperature such as low temperature. The purpose of this study is to identify genes contributing to adaptation of low temperature. METHODS AND RESULTS: To identify genes contributing to adaptation of low temperature, the transcriptomic data were obtained from fat body in Plutella xyostella larvae via next generation sequencing. We identified structural proteins, heat shock proteins, antioxidant enzymes, detoxification proteins, and cryoprotectant mobilization and biosynthesis-related proteins. Genes encoding chitinase, cuticular protein, Hsp23, chytochrome protein, Glutathione S transferase, and phospholipase 2 were up-regulated under low temperature. Proteins related to energy metabolism such as UDP-glycosy ltransferase, trehalase and trehalose transporter were down-regulated. CONCLUSION: When insect pests were exposed to low temperature, changes in gene expression of fat body could provide some hints for understanding temperature adaptation strategies.
Keywords
Plutella xylostella; fat body; transcriptome; low temperature;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Xiong, K. C., Wang, J., Li, J. H., Deng, Y. Q., Pu, P., Fan, H., & Liu, Y. H. (2016). RNA interference of a trehalose-6-phosphate synthase gene reveals its roles during larval-pupal metamorphosis in Bactrocera minax (Diptera: Tephritidae). Journal of Insect Physiology, 91-92, 84-92.   DOI
2 Yamamura, K., & Kiritani, K. (1998). A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Applied Entomology and Zoology, 33(2), 289-298.   DOI
3 Zhang, X., Wu, M., Yao, H., Yang, Y., Cui, M., Tu, Z., Stallones, L., & Xiang, H. (2016). Pesticide poisoning and neurobehavioral function among farm workers in Jiangsu. People's Republic of China, Cortex, 74, 396-404.   DOI
4 Wang, Q., Hasan, G., Pikielny, C.W. (1999). Preferential expression of biotransformation enzymes in the olfactory organs of Drosophila melanogaster , the antennae. The Journal of Biological Chemistry, 274, 10309-10315.   DOI
5 Watson, G. S., Watson, J. A., & Cribb, B. W. (2017). Diversity of cuticular micro- and nanostructures on insects: properties, functions, and potential applications. Annual Review of Entomology, 62, 185-205.   DOI
6 Wei, S. H., Clark, A. G., & Syvanen, M. (2001). Identification and cloning of a key insecticide-metabolizing glutathione S transferase (MdGST-6A) from a hyper insecticide-resistant strain of the housefly Musca domestica. Insect Biochemistry and Molecular Biology, 31(12), 1145-1153.   DOI
7 Weisenburger, D. D. (1993). Human health effects of agrichemical use. Human Pathology, 24(6), 571-576.   DOI
8 Wen, Z., Pan L., Berenbaum, M. R., & Schuler, M. A. (2003). Metabolism of linear and angular furanocoumarins by Papilio polyxenes CYP6B1 co-expressed with NADPH cytochrome P450 reductase. Insect Biochemistry and Molecular Biology, 33(9), 937-947.   DOI
9 Wilson, T. G. (2001). Resistance of Drosophila to Toxins. Annual Review of Entomology, 46(1), 545-571.   DOI
10 Zuo, D., Subjeck, J., & Wang, X. Y. (2016). Unfolding the role of large heat shock proteins: New insights and therapeutic implications. Frontiers in Immunology, 7, 75.
11 Bull, D. L., & Whitten, C. J. (1972). Factors influencing organophosphorus insecticide resistance in tobacco budworms. Journal of Agricultural and Food Chemistry, 20(3), 561-564.   DOI
12 Barbehenn, R. V. (2002). Gut-based antioxidant enzymes in a polyphagous and a graminivorous grasshopper. Journal of Chemical Ecology, 28(7), 1329-1347.   DOI
13 Bauerfeind, S. S., & Fischer, K. (2014). Simulating climate change: temperature extremes but not means diminish performance in a widespread butterfly. Population Ecology, 56(1), 239-250.   DOI
14 Berge, J., Feyereisen, R., & Amichot, M. (1998). Cytochrome P450 monooxygenases and insecticide resistance in insects. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 353(1376), 1701-1705.   DOI
15 Bettencourt, B. R., Hogan, C. C., Nimali, M., & Drohan, B. W. (2008). Inducible and constitutive heat shock gene expression responds to modification of Hsp70 copy number in Drosophila melanogaster but does not compensate for loss of thermotolerance in Hsp70 null flies. BMC biology, 6(1). https://doi.org/10.1186/1741-7007-6-5.
16 Bruey, J. M., Ducasse, C., Bonniaud, P., Ravagnan, L., Susin, S. A., Diaz-Latoud, C., Gurbuxani, S., Arrigo, A. P., Kroemer, G., Solary, E., & Garrido, C. (2000). Hsp27 negatively regulates cell death by interacting with cytochrome c, Nature Cell Biology, 2, 645-652.   DOI
17 Chen, S., Fleischer, S. J., Tobin, P. C., & Saunders, M. C. (2011). Projecting insect voltinism under high and low greenhouse gas emission conditions. Environmental Entomology, 40(3), 505-515.   DOI
18 Balabanidou, V., Grigoraki, L., & Vontas, J. (2018). Insect cuticle: a critical determinant of insecticide resistance. Current Opinion in Insect Science 27, 68-74.   DOI
19 Le Goff, G., Boundy, S., Daborn, P. J., Yen, J. L., Sofr, L., Lind, R., & Ffrench-Constant R. H. (2003). Microarray analysis of cytochrome P450 mediated insecticide resistance in Drosophila. Insect Biochemistry and Molecular Biology, 33(7), 701-708.   DOI
20 Kvist, J., Wheat, C. W., Kallioniemi, E., Saastamoinen, M., Hanski, I., & Frilander, M. J. (2013). Temperature treatments during larval development reveal extensive heritable and plastic variation in gene expression and life history traits. Molecular Ecology, 22(3), 602-619.   DOI
21 Lee, S. C., Cho, Y. S., & Kim, D. I. (1993). Comparative study of toxicological methods and field resistance to insecticides in diamondback moth (Lepidoptera: Plutellidae), Korean Journal of Applied Entomology, 32(3), 323-329.
22 Li X., Schuler M. A., & Berenbaum, M. R. (2007). Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annual Review of Entomology, 52, 231-253.   DOI
23 Li, J., Qian, X., & Sha, B. (2009). Heat shock protein 40: Structural studies and their functional implications. Protein & Peptide Letters, 16(6), 606-612.   DOI
24 Li, N. G. (2016). Strong tolerance to freezing is a major survival strategy in insects inhabiting central Yakutia (Sakha Republic, Russia), the coldest region on earth. Cryobiology, 73(2), 221-225.   DOI
25 Mackenzie, P. I., Owens, I. S., Burchell, B., Bock, K. W., Bairoch, A., Belanger, A., Fournel-Gigleux, S., Green, M., Hum, D. W., Iyanagi, T., Lancet, D,. Louisot, P., Magdalou, J., Chowdhury, J. R., Ritter, J. K., Schachter, H., Tephly, T. R., Tipton, K. F., & Debert, D. W. (1997). The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics, 7(4), 255-269.   DOI
26 Danielson, P. B., Foster, J. L. M., McMahill, M. M., Smith, M. K., & Fogleman, J. C. (1998). Induction by alkaloids and phenobarbital of Family 4 Cytochrome P450s in Drosophila: evidence for involvement in host plant utilization. Molecular and General Genetics MGG, 259(1), 54-59.   DOI
27 Cho, J. M., Kim, K. J., Kim, S. M., Han, D. S., & Hur, J. H. (2001). Diamondback moth (Plutella xylostella L.) resistance to organophosphorus and carbamate insecticides in Kangwon alpine vegetable croplands. The Korean Journal of Pesticide Science, 5(1), 30-35.
28 Clark, M. S., & Worland, M. R. (2008). How insects survive the cold: molecular mechanisms-a review. Journal of Comparative Physiology B, 178(8), 917-933.   DOI
29 Colinet, H., Lee, S. F., & Hoffmann, A. (2010). Temporal expression of heat shock genes during cold stress and recovery from chill coma in adult Drosophila melanogaster. The FEBS journal, 277(1), 174-185.   DOI
30 David, J. P., Boyer, S., Mesneau, A., Ball, A., Ranson, H., & Dauphin-Villemant, C. (2006). Involvement of cytochrome P450 monooxygenases in the response of mosquito larvae to dietary plant xenobiotics. Insect Biochemistry and Molecular Biology, 36(5), 410-420.   DOI
31 Drobnis, E. Z., Crowe, L. M., Berger, T., Anchordoguy, T. J., Overstreet, J. W., & Crowe, J. H. (1993). Cold shock damage is due to lipid phase transitions in cell membranes: a demonstration using sperm as a model. Journal of Experimental Zoology, 265(4), 432-437.   DOI
32 Feyereisen, R. (1999). Insect P450 enzymes. Annual Review of Entomology, 44(1), 507-533.   DOI
33 Morton, R. A. (1992). Evolution of Drosophila insecticide resistance, Genome, 36(1), 1-7.   DOI
34 Garcia-Reina, A., Rodriguez-Garcia, M. J., Ramis, G., & Galian, J. (2017). Real-time cell analysis and heat shock protein gene expression in the TcA Tribolium castaneum cell line in response to environmental stress conditions. Insect Science, 24(3), 358-370.   DOI
35 Meech, R., & Mackenzie, P. I. (1997). Structure and function of uridine diphosphate glucuronosyltransferases. Clinical and Experimental Pharmacology and Physiology, 24(12), 907-915.   DOI
36 Merzendorfer, H., & Zimoch, L. (2003). Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. Journal of Experimental Biology, 206(24), 4393-4412.   DOI
37 Michaud, M. R., & Denlinger, D. L. (2004). Molecular modalities of insect cold survival: current understanding and future trends. International Congress Series, 1275, 32-46.   DOI
38 Mizokami, H., & Yoshitama, K. (2009). Sequestration and metabolism of host-plant flavonoids by the Pale Grass Blue, Pseudozizeeria maha (Lepidoptera: Lycaenidae). Entomological Science, 12(2), 171-176.   DOI
39 Neven, L. G. (2000). Physiological responses of insects to heat. Postharvest Biology and Technology, 21(1), 103-111.   DOI
40 Oppenoorth, F. J. (1984). Biochemistry of insecticide resistance. Pesticide Biochemistry and Physiology, 22(2), 187-193.   DOI
41 Ortelli, F., Rossiter, L. C., Vontas, J., Ranson, H., & Hemingway, J. (2003). Heterologous expression of four glutathione transferase genes genetically linked to a major insecticide-resistance locus from the malaria vector Anopheles gambiae. Biochemical Journal, 373(3), 957-963.   DOI
42 Haubert, D., Haggblom, M. M., Scheu, S., & Ruess, L. (2008). Effects of temperature and life stage on the fatty acid composition of Collembola. European Journal of Soil Biology, 44(2), 213-219.   DOI
43 Palter, K.B., Watanabe, M., Stinson, L., Mahowald, A.P., & Craig, E.A. (1986), Expression and localization of Drosophila melanogaster hsp70 cognate proteins. Molecular Cell Biology, 6, 1187-1203.   DOI
44 Park, Y. J., & Kim, Y. G (2013). RNA interference of glycerol biosynthesis suppresses rapid cold hardening of the beet armyworm, Spodoptera exigua . Journal of Experimental Biology, 4196-4203.
45 Gosden, R. (2011). Cryopreservation: a cold look at technology for fertility preservation. Fertility and Sterility, 96(2), 264-268.   DOI
46 Goto, S. G., & Kimura, M. T. (1998). Heat-and cold-shock responses and temperature adaptations in subtropical and temperate species of Drosophila . Journal of Insect Physiology, 44(12), 1233-1239.   DOI
47 Haslbeck, M., Walke, S., Stromer, T., Ehrnsperger, M., White, H. E., Chen, S., Saibil, H. R., & Buchner, J. (1999). Hsp26: a temperature-regulated chaperone. The EMBO Journal, 18(23), 6744-6751.   DOI
48 Hayakawa, H., Tsutsui, H., & Goto, C. (1988). A survey of overwintering of the diamondback moth, Plutella xylostella Linne, in the Tokachi district of Hokkaido. Annual Report of the Society of Plant Protection of North Japan, 39, 227-228.
49 Hazel, J. R. (1995). Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation?. Annual Review of Physiology, 57(1), 19-42.   DOI
50 Hazel, J. R., & Williams, E. E. (1990). The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Progress in Lipid Research, 29(3), 167-227.   DOI
51 Hopkins, T. L., & Kramer, K. J. (1992). Insect cuticle sclerotization, Annual Review of Entomology, 37(1), 273-302.   DOI
52 Irshad, M., & Chaudhuri, P. S. (2002). Oxidant-antioxidant system: role and significance in human body. Indian Journal of Experimental Biology, 40(11), 1233-1239.
53 Jee, H. (2016). Size dependent classification of heat shock proteins. Journal of Exercise Rehabilitation, 12(4), 255-259.   DOI
54 Real, M. D., Ferre, J., & Chapa, F. J. (1991). UDP-glucosyltransferase activity toward exogenous substrates in Drosophila melanogaster. Analytic Biochemistry, 194(2), 349-352.   DOI
55 Park, Y. J., & Kim, Y. G. (2014). A specific glycerol kinase induces rapid cold hardening of the diamondback moth, Plutella xylostella . Journal of Insect Physiology, 67, 56-63.   DOI
56 Petersen, R. A., Niamsup, H., Berenbaum, M. R., & Schuler, M. A. (2003). Transcriptional response elements in the promoter of CYP6B1, an insect P450 gene regulated by plant chemicals. Biochimica et Biophysica Acta (BBA)-General Subjects, 1619(3), 269-282.   DOI
57 Rausell, C., Llorca, J., & Dolores Real, M. (1997). Separation by FPLC chromatofocusing of UDP-glucosyltransferases from three developmental stages of Drosophila melanogaster . Archives of Insect Biochemistry and Physiology, 34(3), 347-358.   DOI
58 Sable, M. G., & Rana, D. K. (2016). Impact of global warming on insect behavior - A review. Agricultural Reviews, 37(1), 81-84.
59 Scott, J.G. (1999). Cytochrome P450 and insecticide resistance. Insect Biochemistry and Molecular Biology, 29(9), 757-777.   DOI
60 Sformo, T., Walters, K., Jeannet, K., Wowk, B., Fahy, G. M., Barnes, B. M., & Duman, J. G. (2010). Deep supercooling, vitrification and limited survival to-100 C in the Alaskan beetle Cucujus clavipes puniceus (Coleoptera: Cucujidae) larvae. Journal of Experimental Biology, 213(3), 502-509.   DOI
61 Sinclair, B.J., Addo-Bediako, A., & Chown, S.L. (2003). Climatic variability and the evolution of insect freeze tolerance. Biological Reviews, 78(2), 181-195.   DOI
62 Sorensen, J. G., Nielsen, M. M., Kruhoffer, M., Justesen, J., & Loeschcke, V. (2005). Full genome gene expression analysis of the heat stress response in Drosophila melanogaster . Cell Stress & Chaperones, 10(4), 312-328.   DOI
63 Kriehuber, T., Rattei, T., Weinmaier, T., Bepperling, A., Haslbeck, M., & Buchner, J. (2010). Independent evolution of the core domain and its flanking sequences in small heat shock proteins. The FASEB Journal, 24(10), 3633-3642.   DOI
64 Ahmad, S. A., & Hopkins, T. L. (1993). ${\beta}$-glucosylation of plant phenolics by phenol ${\beta}$-glucosyltransferase in larval tissues of the tobacco hornworm, Manduca sexta (L.). Insect Biochemistry and Molecular Biology, 23(5), 581-589.   DOI
65 Kern, C., Wolf, C., Bender, F., Berger, M., Noack, S., Schmalz, S., & Ilg, T. (2012). Trehalose-6-phosphate synthase from the cat flea Ctenocephalides felis and Drosophila melanogaster: gene identification, cloning, heterologous functional expression and identification of inhibitors by high throughput screening. Insect Molecular Biology, 21(4), 456-471.   DOI
66 Kim, M. H., & Lee, S. C. (1991). Bionomics of diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) in southern region of Korea. Korean Journal of Applied Entomology, 30(3), 169-173.
67 Kim, Y. H., Lee, J. H., & Lee, S. H. (2011). Determination of organophosphate and carbamate resistance allele frequency in diamondback moth populations by quantitative sequencing and inhibition tests. Journal of Asia-Pacific Entomology, 14(1), 29-33.   DOI
68 Kim, Y., Kim, K., & Kim, N. (1999). Genetic difference between two field populations of Plutella xylostella (Linnee) based on four polymorphic allozymes. Journal of Asia-Pacific Entomology, 2(1), 1-5.   DOI
69 King, A. M., & MacRae, T. H. (2015). Insect heat shock proteins during stress and diapause. Annual Review of Entomology, 60, 59-75.   DOI
70 Kostal, V., Simek, P., Zahradnickova, H., Cimlova, J., & Stetina, T. (2012). Conversion of the chill susceptible fruit fly larva (Drosophila melanogaster) to a freeze tolerant organism. Proceedings of the National Academy of Sciences of the United States of America, 109(9), 3270-3274.   DOI
71 Krobitsch, S., Brandau, S., Hoyer, C., Schmetz, C., Hubel, A., & Clos, J. (1998). Leishmania donovani heat shock protein 100 characterization and function in amastigote stage differentiation. Journal of Biological Chemistry, 273(11), 6488-6494.   DOI
72 Toxopeus, J., & Sinclair, B. J. (2018). Mechanisms underlying insect freeze tolerance. Biological Reviews, 93(4), 1891-1914.   DOI
73 Stetina, T., Kostal, V., & Korbelova, J. (2015). The role of inducible Hsp70, and other heat shock proteins, in adaptive complex of cold tolerance of the fruit fly (Drosophila melanogaster). PLoS One, 10(6), e0128976.   DOI
74 Talekar, N. S., & Shelton, A. M. (1993). Biology, ecology, and management of the diamondback moth. Annual Review of Entomology, 38(1), 275-301.   DOI
75 Thompson, S. N. (2003). Trehalose- the insect 'blood' sugar. Advances in Insect Physiology, 31, 205-285.   DOI