• Title/Summary/Keyword: Surveying Target

Search Result 167, Processing Time 0.027 seconds

Extraction of Geometric Information on Highway Using Terrestrial Laser Scanning Technology (지상 레이저 스캐닝 기술을 이용한 도로 기하정보 추출)

  • Lee, Jong-Chool;Lee, Byung-Gul;Kim, Jin-Soo
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.379-382
    • /
    • 2007
  • Laser scanning technology with high positional accuracy and high density automation will be widely applied in vast range of fields including geomatics. Especially, the development of laser scanning technology enabling long range information extraction is increasing its full use in civil engineering. The purpose of this study is to extract accurate highway geometric information taking the advantages of scanning technology. Fulfilling this goal, the information of target highway's three-dimensional data was obtained through terrestrial laser scanning technology. In accordance with the result from target highway's geometric information extraction using the information above, laser scanning technology showed faster speed and better accuracy on highway geometric information extraction with reduced cost compared to traditional methods.

  • PDF

Improvement Plans for Working Area of Cadastral Surveyors (지적측량수행자의 업무영역 개선방안에 관한 연구)

  • Hong, Sung-Eon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.237-242
    • /
    • 2014
  • This study is to analyze open work status and conditions of cadastral surveyors and suggest improvement plans for working area of cadastral surveyors. The results are as below. Based on the analysis, this study suggests expansion of confirmation surveying for cadastral target range, ease of confirmation surveying standard for cadastral, and broader participation opportunities for cadastral surveyors in the cadastral re-survey project as improvement plans. If the Ministry of Land, Infrastructure, and Transport seeks legislative and policy improvement that can create more rational and ideal cadastral surveying conditions based on various reviews on improvement plans for working area of cadastral surveyors in this study will promote symbiotic development among cadastral surveyors.

Automatic Target Recognition for Camera Calibration (카메라 캘리브레이션을 위한 자동 타겟 인식)

  • Kim, Eui Myoung;Kwon, Sang Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.525-534
    • /
    • 2018
  • Camera calibration is the process of determining the parameters such as the focal length of a camera, the position of a principal point, and lens distortions. For this purpose, images of checkerboard have been mainly used. When targets were automatically recognized in checkerboard image, the existing studies had limitations in that the user should have a good understanding of the input parameters for recognizing the target or that all checkerboard should appear in the image. In this study, a methodology for automatic target recognition was proposed. In this method, even if only a part of the checkerboard image was captured using rectangles including eight blobs, four each at the central portion and the outer portion of the checkerboard, the index of the target can be automatically assigned. In addition, there is no need for input parameters. In this study, three conditions were used to automatically extract the center point of the checkerboard target: the distortion of black and white pattern, the frequency of edge change, and the ratio of black and white pixels. Also, the direction and numbering of the checkerboard targets were made with blobs. Through experiments on two types of checkerboards, it was possible to automatically recognize checkerboard targets within a minute for 36 images.

On-Site vs. Laboratorial Implementation of Camera Self-Calibration for UAV Photogrammetry

  • Han, Soohee;Park, Jinhwan;Lee, Wonhee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.349-356
    • /
    • 2016
  • This study investigates two camera self-calibration approaches, on-site self-calibration and laboratorial self-calibration, both of which are based on self-calibration theory and implemented by using a commercial photogrammetric solution, Agisoft PhotoScan. On-site self-calibration implements camera self-calibration and aerial triangulation by using the same aerial photos. Laboratorial self-calibration implements camera self-calibration by using photos captured onto a patterned target displayed on a digital panel, then conducts aerial triangulation by using the aerial photos. Aerial photos are captured by an unmanned aerial vehicle, and target photos are captured onto a 27in LCD monitor and a 47in LCD TV in two experiments. Calibration parameters are estimated by the two approaches and errors of aerial triangulation are analyzed. Results reveal that on-site self-calibration excels laboratorial self-calibration in terms of vertical accuracy. By contrast, laboratorial self-calibration obtains better horizontal accuracy if photos are captured at a greater distance from the target by using a larger display panel.

Design and Running of a Surveying Ship for Bathymetry of The Manned and Unmanned Control System (유.무인운용 가능한 수심측량을 위한 측량선 설계 및 구현)

  • Choi, Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.1
    • /
    • pp.16-21
    • /
    • 2011
  • Bathymetry which is mainly used on the earth or the sea can be surveyed directly by a person who is on a surveying ship or in a way one estimates the target through a surveying ship. However, the surveying ship which is being used now is divided into a manned and unmanned system and it's difficult to deal with it appropriately according to the water depth or the condition of weather. Therefore, this study will invent the surveying ship that can measure the water depth with the unmanned remote control system in the place where it's difficult to for man access because of a bad weather or a vast area. There are two methods in the control system of the manned and unmanned surveying ship which has been developed in this study. One is an automatic control which moves on the path set by the user in advance and the other is the optimized passive control in which the control station can manage the direction and speed of a surveying ship directly.

Investigation on the Applicability of Defocus Blur Variations to Depth Calculation Using Target Sheet Images Captured by a DSLR Camera

  • Seo, Suyoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.2
    • /
    • pp.109-121
    • /
    • 2020
  • Depth calculation of objects in a scene from images is one of the most studied processes in the fields of image processing, computer vision, and photogrammetry. Conventionally, depth is calculated using a pair of overlapped images captured at different view points. However, there have been studies to calculate depths from a single image. Theoretically, it is known to be possible to calculate depth using the diameter of CoC (Circle of Confusion) caused by defocus under the assumption of a thin lens model. Thus, this study aims to verify the validity of the thin lens model to calculate depth from edge blur amount which corresponds to the radius of CoC. For this study, a commercially available DSLR (Digital Single Lens Reflex) camera was used to capture a set of target sheets which had different edge contrasts. In order to find out the pattern of the variations of edge blur against varying combination of FD (Focusing Distance) and OD (Object Distance), the camera was set to varying FD and target sheet images were captured at varying OD under each FD. Then, the edge blur and edge displacement were estimated from edge slope profiles using a brute-force method. The experimental results show that the pattern of the variations of edge blur observed in the target images was apart from their corresponding theoretical amounts derived under the thin lens assumption but can still be utilized to calculate depth from a single image for the cases similar to the limited conditions experimented under which the tendency between FD and OD is manifest.

Investigation on Terrestrial Laser Scanner(TLS) Surveying and its Guideline (지상레이저스캐너(TLS) 측량과 가이드라인에 관한 연구)

  • KIM, Jin-Woo;JEONG, Woon-Sik;LEE, Young-Jin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.4
    • /
    • pp.55-64
    • /
    • 2021
  • In this study, the operation method and accuracy of Terrestrial Laser Scanner(TLS) are reviewed and discussed by experimental measurements, and guidelines of TLS surveying operation are proposed. Ground control points and TLS station points were measured by TS and/or GPS, in TLS observation experiments, and wood targets were used which designed by this study team. RMSE accuracy of TLS scan shows that TLS surveying operation can be used in the topographic mapping of 1/250 scale and level of 1/100 BIM, the drone data also used in TLS data completeness. Additionally, as the results of the field experiment, the guidelines for TLS surveying operartions were proposed.

Target Length Estimation of Target by Scattering Center Number Estimation Methods (산란점 수 추정방법에 따른 표적의 길이 추정)

  • Lee, Jae-In;Yoo, Jong-Won;Kim, Nammoon;Jung, Kwangyong;Seo, Dong-Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.543-551
    • /
    • 2020
  • In this paper, we introduce a method to improve the accuracy of the length estimation of targets using a radar. The HRRP (High Resolution Range Profile) obtained from a received radar signal represents the one-dimensional scattering characteristics of a target, and peaks of the HRRP means the scattering centers that strongly scatter electromagnetic waves. By using the extracted scattering centers, the downrange length of the target, which is the length in the RLOS (Radar Line of Sight), can be estimated, and the real length of the target should be estimated considering the angle between the target and the RLOS. In order to improve the accuracy of the length estimation, parametric estimation methods, which extract scattering centers more exactly than the method using the HRRP, can be used. The parametric estimation method is applied after the number of scattering centers is determined, and is thus greatly affected by the accuracy of the number of scattering centers. In this paper, in order to improve the accuracy of target length estimation, the number of scattering centers is estimated by using AIC (Akaike Information Criteria), MDL (Minimum Descriptive Length), and GLE (Gerschgorin Likelihood Estimators), which are the source number estimation methods based on information theoretic criteria. Using the ESPRIT algorithm as a parameter estimation method, a length estimation simulation was performed for simple target CAD models, and the GLE method represented excellent performance in estimating the number of scattering centers and estimating the target length.

Atmospheric Correction and Velocity Aberration for Physical Sensor Modeling of High-Resolution Satellite Images (고해상도 위성영상의 센서모델링을 위한 대기 및 속도 보정)

  • Oh, Jae-Hong;Lee, Chang-No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.5
    • /
    • pp.519-525
    • /
    • 2011
  • High-resolution earth-observing satellites acquire substantial amount of geospatial images. In addition to high image quality, high-resolution satellite images (HRSI) provide unprecedented direct georegistration accuracy, which have been enabled by accurate orbit determination technology. Direct georegistration is carried out by relating the determined position and attitude of camera to the ground target, i.e., projecting an image point to the earth ellipsoid using the collinearity equation. However, the apparent position of ground target is displaced due to the atmosphere and satellite velocity causing significant georegistration bias. In other words, optic ray from the earth surface to satellite cameras at 400~900km altitude refracts due to the thick atmosphere which is called atmospheric refraction. Velocity aberration is caused by high traveling speed of earth-observing satellites, approximately 7.7 km/s, relative to the earth surface. These effects should be compensated for accurate direct georegistration of HRSI. Therefore, this study presents the equation and the compensation procedure of atmospheric refraction and velocity aberration. Then, the effects are simulated at different image acquisition geometry to present how much bias is introduced. Finally, these effects are evaluated for Quickbird and WorldView-1 based on the physical sensor model.

A Study on the Generation of Three Dimensional Orthophoto Map from Aerial Photograph by Digital Photogrammetry (수치사진측량 기법을 이용한 항공사진의 정사투영사진 지도 생성에 관한 연구)

  • 조재호;윤종성
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.2
    • /
    • pp.203-211
    • /
    • 1998
  • A traditional method to produce three dimensional orthophoto map has been studied by digital photogrammetry which decides a height by digitally searching conjugate points on the stereo image. Many researches in digital photogrammetric field are still in progress to determine conjugate points automatically. In this study, we analyze the effect of accuracy of area-based image matching with changing eight types of target area size using four types of image pyramid. The result of image matching to each method compared with 1/5,000 digital mapping data. We decided a optimal size of target area on a percentage of image matching. Digital elevation model is generated by matching results and bundle method. As a result, three dimensional orthophoto map is made in terms of digital elevation model and orthophoto.

  • PDF