• Title/Summary/Keyword: Surface characteristic

Search Result 2,492, Processing Time 0.035 seconds

A Block-Based Volume Rendering Algorithm Using Shear-Warp factorization (쉬어-왑 분해를 이용한 블록 기반의 볼륨 렌더링 기법)

  • 권성민;김진국;박현욱;나종범
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.433-439
    • /
    • 2000
  • Volume rendering is a powerful tool for visualizing sampled scalar values from 3D data without modeling geometric primitives to the data. The volume rendering can describe the surface-detail of a complex object. Owing to this characteristic. volume rendering has been used to visualize medical data. The size of volume data is usually too big to handle in real time. Recently, various volume rendering algorithms have been proposed in order to reduce the rendering time. However, most of the proposed algorithms are not proper for fast rendering of large non-coded volume data. In this paper, we propose a block-based fast volume rendering algorithm using a shear-warp factorization for non-coded volume data. The algorithm performs volume rendering by using the organ segmentation data as well as block-based 3D volume data, and increases the rendering speed for large non-coded volume data. The proposed algorithm is evaluated by rendering 3D X-ray CT body images and MR head images.

  • PDF

Characteristic Investigation of the Bedrock Earthquake Records for the Structural Time-History Seismic Analyses (구조물의 시간이력 지진해석을 위한 암반지진기록의 특성분석)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.89-95
    • /
    • 2008
  • Until recently lots of time-history seismic analyses were performed with the earthquake motions recorded at the soft soil surface without taking into account the effects of the soft soil amplification. However, it is important to utilize the bedrock seismic motions for the rational seismic analyses of a structure considering the site soil conditions. In this study, 26 bedrock earthquake records were selected from publicly available 1557 seismic records provided by the Pacific Earthquake Engineering Research Center (PEER) for the study, and the characteristics of them were investigated. Study results showed that it is not reasonable to estimate earthquake acceleration intensity from the magnitude of an earthquake without considering the site soil conditions and it is also hard to draw any general relationships between earthquake acceleration intensity, earthquake magnitude and epicenter distance with bedrock earthquake records in the PEER database. However, 26 bedrock earthquake records selected in this study can be utilized for the time-history seismic analyses of a structure-soil system as bedrock earthquake ones, and it is also confirmed that it is necessary to take into account acceleration intensity, magnitude, epicenter distance and site conditions simultaneously for the proper use of those selected earthquake records.

Heat of Hydration and Thermal Crack Control for Floating Concrete Mass Foundation (부상식 매스콘크리트 기초의 수화열 관리 및 온도균열 제어)

  • Rhee, In-Kyu;Kim, Kwang-Don;Kim, Tae-Ook;Lee, Jun-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.156-164
    • /
    • 2010
  • A total of 6 stepwise constructions were made for building the floating mass concrete foundation. The optimal curing strategies and specialized construction guidelines were adoptively extracted from the 1.5m cube mock-up test prior to the main concrete work. Two different thermal crack index(TCI) calculations from current construction manual exhibit relatively low values as comparing the measured temperature data. This implies that the hydration-induced cracking could be developed in parts of concrete mass. However, the controversial phenomenons in reality were observed. No significant surface cracks are detected at the successive construction stages. Thereby, this paper raises the question regarding on the existence of characteristic length with varying size and shape of a target specimen which are missing in the current construction manual. The isothermal core area and high thermal gradient area in the edge volume should be identified and be introduced to TCI calculation for the purpose of an accuracy.

Performance evaluation of organic matter adsorption from actual graywater using GAC: OrbitrapTM MS and optimization

  • Ligaray, Mayzonee;Kim, Minjeong;Shim, Jaegyu;Park, Jongkwan;Cho, Kyung Hwa
    • Membrane and Water Treatment
    • /
    • v.10 no.6
    • /
    • pp.471-484
    • /
    • 2019
  • The complex combination of organic contaminants in the wastewater made water treatment challenging; hence, organic matter in water bodies is usually measured in terms of organic carbon. Since it is important to identify the types of compounds when deciding suitable treatment methods, this study implemented a quantitative and qualitative analysis of the organic matter content in an actual graywater sample from Ulsan, Republic of Korea using mass spectroscopy (MS). The graywater was treated using adsorption to remove the organic contaminants. Using orbitrap MS, the organic matter content between an untreated graywater and the treated effluent were compared which yielded a significant formula count difference for the samples. It was revealed that CHON formula has the highest removal count. Isotherm studies found that the Freundlich equation was the best fit with a coefficient of determination ($R^2$) of 0.9705 indicating a heterogenous GAC surface with a multilayer characteristic. Kinetics experiments fit the pseudo-second order equation with an $R^2$ of 0.9998 implying that chemisorption is the rate-determining step between the organic compounds and GAC at rate constant of $52.53g/mg{\cdot}h$. At low temperatures, the reaction between GAC and organic compounds were found to be spontaneous and exothermic. The conditions for optimization were set to achieve a maximum DOC and TN removal which yielded removal percentages of 94.59% and 80.75% for the DOC and TN, respectively. The optimum parameter values are the following: pH 6.3, 2.46 g of GAC for every 30 mL of graywater sample, 23.39 hrs contact time and $38.6^{\circ}C$.

Stability Research on Aerodynamic Configuration Design and Trajectory Analysis for Low Altitude Subsonic Unmanned Air Vehicle

  • Rafique, Amer Farhan;He, LinShu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.690-699
    • /
    • 2008
  • In this paper a conventional approach for design and analysis of subsonic air vehicle is used. First of all subsonic aerodynamic coefficients are calculated using Computational Fluid Dynamics(CFD) tools and then wind-tunnel model was developed that integrates vehicle components including control surfaces and initial data is validated as well as refined to enhance aerodynamic efficiency of control surfaces. Experimental data and limited computational fluid dynamics solutions were obtained over a Mach number range of 0.5 to 0.8. The experimental data show the component build-up effects and the aerodynamic characteristics of the fully integrated configurations, including control surface effectiveness. The aerodynamic performance of the fully integrated configurations is comparable to previously tested subsonic vehicle models. Mathematical model of the dynamic equations in 6-Degree of Freedom(DOF) is then simulated using MATLAB/SIMULINK to simulate trajectory of vehicle. Effect of altitude on range, Mach no and stability is also shown. The approach presented here is suitable enough for preliminary conceptual design. The trajectory evaluation method devised accurately predicted the performance for the air vehicle studied. Formulas for the aerodynamic coefficients for this model are constructed to include the effects of several different aspects contributing to the aerodynamic performance of the vehicle. Characteristic parameter values of the model are compared with those found in a different set of similar air vehicle simulations. We execute a set of example problems which solve the dynamic equations to find the aircraft trajectory given specified control inputs.

  • PDF

Effects of Suspended Solids, pH and Salinity on the Chemical Fate of Oxolinic Acid in the Aquatic Environment (해양환경에서 부유물질, 염분 및 pH의 옥소린산 화학적 거동에 미치는 영향)

  • Yoon Duk-Hyun;Kim Mu-Chan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.2 s.25
    • /
    • pp.99-106
    • /
    • 2006
  • The fate of chemical pollutants in the aquatic environment is generally considered to be strongly influenced by environmental factors such as pH, salinity and electrostatic charges on the surface of particles ai well as by the characteristic of chemicals. Oxolinic acid was measured by chemical analysis using HPLC to determine the effect of salinity, pH and suspended solids on chemical binding and by bioassay for measuring bioactivity. The higher contentration of suspended solids in the medium, the lower concentration of oxolinic and was detected in measurements from by both HPLC and biosssay analysis. This indicates particle may have a stronger binding or absorption effect on oxolinic acid. Bioassay analysis showed weaker bioacivity at higher salinity and pH 7.0, but this result of bioassay analysis was different from the result of HPLC.

  • PDF

Modeling of the friction in the tool-workpiece system in diamond burnishing process

  • Maximov, J.T.;Anchev, A.P.;Duncheva, G.V.
    • Coupled systems mechanics
    • /
    • v.4 no.4
    • /
    • pp.279-295
    • /
    • 2015
  • The article presents a theoretical-experimental approach developed for modeling the coefficient of sliding friction in the dynamic system tool-workpiece in slide diamond burnishing of low-alloy unhardened steels. The experimental setup, implemented on conventional lathe, includes a specially designed device, with a straight cantilever beam as body. The beam is simultaneously loaded by bending (from transverse slide friction force) and compression (from longitudinal burnishing force), which is a reason for geometrical nonlinearity. A method, based on the idea of separation of the variables (time and metric) before establishing the differential equation of motion, has been applied for dynamic modeling of the beam elastic curve. Between the longitudinal (burnishing force) and transverse (slide friction force) forces exists a correlation defined by Coulomb's law of sliding friction. On this basis, an analytical relationship between the beam deflection and the sought friction coefficient has been obtained. In order to measure the deflection of the beam, strain gauges connected in a "full bridge" type of circuit are used. A flexible adhesive is selected, which provides an opportunity for dynamic measurements through the constructed measuring system. The signal is proportional to the beam deflection and is fed to the analog input of USB DAQ board, from where the signal enters in a purposely created virtual instrument which is developed by means of Labview. The basic characteristic of the virtual instrument is the ability to record and visualize in a real time the measured deflection. The signal sampling frequency is chosen in accordance with Nyquist-Shannon sampling theorem. In order to obtain a regression model of the friction coefficient with the participation of the diamond burnishing process parameters, an experimental design with 55 experimental points is synthesized. A regression analysis and analysis of variance have been carried out. The influence of the factors on the friction coefficient is established using sections of the hyper-surface of the friction coefficient model with the hyper-planes.

Study on the Design of Butyl Rubber Compound and Noise Reduction System for Sound Insulation (소음 차단 성능 향상을 위한 부틸 탄성체 배합 및 진동제어 시스템 디자인 연구)

  • Kim, Won-Taek;Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • v.49 no.2
    • /
    • pp.95-102
    • /
    • 2014
  • The noise between floors of apartment has been hot issue nowadays. In order to improve the noise insulation performance, we proposed the antivibration rubber system which can be applied to the floor system for sound insulation. Among various types of elastomer, butyl rubber showed the good aging characteristic, low rebound resilience and high damping factor. Thus, the butyl rubber was selected as a basic rubber for antivibration rubber system. The effects of type and loading amounts of carbon black on antivibration properties of butyl rubber were studied. The increase of surface area and the content of carbon black resulted in high bound rubber fraction, high mechanical property, low rebound resilience, and high damping factor of butyl rubber. Based on the results of this study, the new antivibration rubber was prepared and applied to the floor system for sound insulation. The impact sounds of floor system proposed in this study were 40 dB and 43 dB in cases of light weight and heavy weight impact sound, respectively.

A Study on the Synthesis of CH4 from CO2 of Biogas Using 40 wt% Ni-Mg Catalyst: Characteristic Comparison of Commercial Catalyst and 40 wt% Ni Catalyt (40 wt% Ni 촉매에서 바이오가스 중 CO2로부터 메탄제조에 관한 연구: Commercial Catalyst와의 특성 비교분석)

  • HAN, DANBEE;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.388-400
    • /
    • 2021
  • Power to gas (P2G) is one of the energy storage technologies that can increase the storage period and storage capacity compared to the existing battery type. One of P2G technology produces hydrogen by decomposing water from renewable energy (electricity) and the other produces CH4 by reacting hydrogen with CO2. This study is an experimental study to produce CH4 by reacting CO2 of biogas with hydrogen using a 40 wt% Ni-Mg-Al catalyst and a commercial catalyst. Catalyst characteristics were analyzed through H2-TPR, XRD, and XPS instruments of 40% Ni catalyst and commercial catalyst. The effect on the CO2 conversion rate and CH4 selectivity was analyzed, and the activities of a 40% Ni catalyst and a commercial catalyst were compared. As a result of experiment, In the case of a 40 wt% catalyst, the maximum CO2 conversion rate showed 77% at the reaction temperature of 400℃. Meanwhile, the commercial catalyst showed a maximum CO2 conversion rate of 60% at 450℃. When 50% of CO was added to the CO2 methanation reaction, the CO2 conversion rate was increased by about 5%. This is considered to be due to the atmosphere in which the CO reaction can occur without the process of converting to CH4 after forming carbon and CO as intermediates in terms of the CO2 mechanism on the catalyst surface.

Optimization of Cultivation and Extraction Conditions of Pupae-Cordyceps for Cordycepin Production

  • Turk, Ayman;Kim, Beom Seok;Ko, Sung Min;Yeon, Sang Won;Ryu, Se Hwan;Kim, Young-Guk;Hwang, Bang Yeon;Lee, Mi Kyeong
    • Natural Product Sciences
    • /
    • v.27 no.3
    • /
    • pp.187-192
    • /
    • 2021
  • Cordycepin is a characteristic bioactive compound of Cordyceps militaris with various beneficial effects. Cordyceps grows on both grains and insects, and the content of cordycepin varies depending on the cultivation conditions. In this study, the effect of culture conditions on the cordycepin content was analyzed and the extraction conditions were optimized. Analysis of cordycepin content in Pupae-Cordyceps found that it was highly affected by temperature in culture conditions. In the case of mycelium, it grows well at 20 and 25 ℃, but not at 30 ℃. However, the content of cordycepin was highest at 30℃ and less at 20 ℃. The fruiting body also showed a similar tendency: growth was 20 ℃ > 25 ℃ > 30 ℃, but the cordycepin content was 30 ℃ > 25 ℃ > 20 ℃. The content of cordycepin decreased after the fruiting bodies were produced. Next, extraction conditions such as solvent and time were optimized for maximum cordycepin content using response surface methodology (RSM). There was a large difference in the content of cordycepin according to the content of ethanol and the extraction temperature. Through RSM, it was confirmed that the optimum condition for extraction of cordycepin was 48.9 ℃ using 49.0% ethanol, and 160.9 mg/g extract could be obtained under this condition. In conclusion, this study suggested the optimized conditions for the cultivation and extraction of Pupae-Cordyceps for maximizing the content of cordycepin, and this may be applied to the discovery of materials using cordycepin.