DOI QR코드

DOI QR Code

A Study on the Synthesis of CH4 from CO2 of Biogas Using 40 wt% Ni-Mg Catalyst: Characteristic Comparison of Commercial Catalyst and 40 wt% Ni Catalyt

40 wt% Ni 촉매에서 바이오가스 중 CO2로부터 메탄제조에 관한 연구: Commercial Catalyst와의 특성 비교분석

  • HAN, DANBEE (Department of Environment-Energy Engineering, The University of Suwon) ;
  • BAEK, YOUNGSOON (Department of Environment-Energy Engineering, The University of Suwon)
  • 한단비 (수원대학교 환경에너지공학과) ;
  • 백영순 (수원대학교 환경에너지공학과)
  • Received : 2021.10.13
  • Accepted : 2021.10.20
  • Published : 2021.10.30

Abstract

Power to gas (P2G) is one of the energy storage technologies that can increase the storage period and storage capacity compared to the existing battery type. One of P2G technology produces hydrogen by decomposing water from renewable energy (electricity) and the other produces CH4 by reacting hydrogen with CO2. This study is an experimental study to produce CH4 by reacting CO2 of biogas with hydrogen using a 40 wt% Ni-Mg-Al catalyst and a commercial catalyst. Catalyst characteristics were analyzed through H2-TPR, XRD, and XPS instruments of 40% Ni catalyst and commercial catalyst. The effect on the CO2 conversion rate and CH4 selectivity was analyzed, and the activities of a 40% Ni catalyst and a commercial catalyst were compared. As a result of experiment, In the case of a 40 wt% catalyst, the maximum CO2 conversion rate showed 77% at the reaction temperature of 400℃. Meanwhile, the commercial catalyst showed a maximum CO2 conversion rate of 60% at 450℃. When 50% of CO was added to the CO2 methanation reaction, the CO2 conversion rate was increased by about 5%. This is considered to be due to the atmosphere in which the CO reaction can occur without the process of converting to CH4 after forming carbon and CO as intermediates in terms of the CO2 mechanism on the catalyst surface.

Keywords

Acknowledgement

This study was conducted with the support of the Korea institute of energy technology evaluation and planning (KETEP) and the Korean government (ministry of trade, industry and energy, 2021) (funding source No. 20213030040270, development and demonstration of hydrogen production process based on waste plastic non-oxidative pyrolysis). This study was conducted with the support of the basic science research capacity enhancement project through the Korea basic science institute (national research facilities and equipment center) grant funded by the ministry of education (2019R1A6C1010013).

References

  1. G. Wojciech, Z. Witold, S. Grzegorz, S. Andrzej, and K. Agnieszka, "Nickel catalysts supported on silica microspheres for CO2 methanation", Microporous and Mesoporous Materials, Vol. 272, 2018, pp. 79-91, doi: https://doi.org/10.1016/j.micromeso.2018.06.022.
  2. Z. Guojie, L. Jiwei, X. Ying, and S. Yinghui, "A review of CH4-CO2 reforming to synthesis gasover Ni-based catalysts in recent years (2010-2017)", International Journal of Hydrogen Energy, Vol. 43, No. 32, 2018, pp. 15030-15054, doi: https://doi.org/10.1016/j.ijhydene.2018.06.091.
  3. L. Wenhui, L. Yi, M. Minchen, D. Fanshu, L. Zhongmin, G. Xinwen, and S. Chunshan, "Organic acid-assisted preparation of highly dispersed Co/ZrO2 catalysts with superior activity for CO2 methanation", Applied Catalysis B: Environmental, Vol. 254, 2019, pp. 531-540, doi: https://doi.org/10.1016/j.apcatb.2019.05.028.
  4. B. Zhoufeng, M. C. Yi, Y. Yang, and K. Sibudjing, "Morphology dependence of catalytic properties of Ni/CeO2 for CO2 methanation: a kinetic and mechanism study", Catalysis Today, Vol. 347, 2020, pp. 31-38, doi: https://doi.org/10.1016/j.cattod.2018.04.067.
  5. E. E. Benson, C. P. Kubiak, A. J. Sathrum, and J. M. Smieja, "Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels" Chem. Soc. Rev. Vol. 38, 2009, pp. 89-99, doi: https://doi.org/10.1039/B804323J.
  6. S. Alfredo, F. Jose, A. Armando, and C. Juan, "Participation of surface bicarbonate, formate and methoxy species in the carbon dioxide methanation catalyzed by ZrO2-supported Ni", Applied Catalysis B: Environmental, Vol. 218, 2017, pp. 611-620, doi: https://doi.org/10.1016/j.apcatb.2017.06.063.
  7. S. G. Edwin C. Narendraraj, V. K. Ivan, G. Aida, V. Enrique, S. Antonio, and N. Raveendran, "Highly efficient nickel-niobia composite catalysts for hydrogenation of CO2 to methane", Chemical Engineering Science, Vol. 194, 2019, pp. 2-9, doi: https://doi.org/10.1016/j.ces.2018.08.038.
  8. "InfoMine: Mining Intelligence & Technology".
  9. J. B. Powell and S. H. Langer, "Low-temperature methanation and fischer-tropsch activity over supported ruthenium, nickel, and cobalt catalysts", J Catal, Vol. 94, 1985, pp. 556-569, doi: https://doi.org/10.1016/0021-9517(85)90222-2.
  10. E. Kok , J. Scott, N. Cant and D. Trimm, "The impact of ruthenium, lanthanum and activation conditions on the methanation activity of alumina-supported cobalt catalysts" Catal Today, Vol. 164, No. 1, 2011, pp. 297-301, doi: https://doi.org/10.1016/j.cattod.2010.11.011.
  11. G. H. Watson, "Methanation catalysts", IEA Coal Research, 1980.
  12. P. Gerard and A. Beenackers, "Kinetics and selectivity of fischer-tropsch synthesis: a literature review', Catal Rev - Sci Eng, Vol. 41, No. 3-4, 1999, pp. 255-318, doi: https://doi.org/10.1081/CR-100101170.
  13. G. Iglesias, C. de Vries, M. Claeys, and G. Schaub, "Chemical energy storage in gaseous hydrocarbons via iron Fischer-Tropsch synthesis from H2/CO2 -kinetics, selectivity and process considerations", Catal Today, Vol. 242, 2015, pp. 184-192, doi: https://doi.org/10.1016/j.cattod.2014.05.020.
  14. G. Mills and F. Steffgen, "Catalytic methanation", Catal Rev, Vol. 8, No. 1, 1974, pp. 159-210, doi: https://doi.org/10.1080/01614947408071860.
  15. J. Gao, Q. Liu , F. Gu, B. Liu, Z. Zhong, and F. Su, "Recent advances in methanation catalysts for the production of synthetic natural gas", RSC Adv, Vol. 29, 2015, pp. 22759-22776, doi: https://doi.org/10.1039/C4RA16114A.
  16. M. Fan, K. Miao, J. Lin, H. Zhang, and D. Liao. "Mg-Al oxide supported Ni catalysts with enhanced stability for efficient synthetic natural gas from syngas", Appl Surf Sci, Vol. 307, 2014, pp. 682-688, doi: https://doi.org/10.1016/j.apsusc.2014.04.098.
  17. B. Wang, Y. Yao, M. Jiang, Z. Li, X. Ma, S. Qin, and Q. Sun, "Effect of cobalt and its adding sequence on the catalytic performance of MoO3/Al2O3 toward sulfur-resistant methanation", J Energy Chem, Vol. 23, No. 1, 2014, pp. 35-42, doi: https://doi.org/10.1016/S2095-4956(14)60115-7.
  18. H. Qin, C. Guo, Y. Wu, and J. Zhang, "Effect of La2O3 promoter on NiO/Al2O3 catalyst in CO methanation", Korean J Chem Eng, Vol. 31, 2014, pp. 1168-1173, doi: https://doi.org/10.1007/s11814-014-0013-7.
  19. Q. Liu, F. Gu, X. Lu, Y. Liu, H. Li, Z. Zhong, G. Xu, and F. Su, "Enhanced catalytic performances of Ni/Al2O3 catalyst via addition of V2O3 for CO methanation" Appl Catal A, Vol. 488, 2014, pp. 37-47, doi: https://doi.org/10.1016/j.apcata.2014.09.028.
  20. H. Liu, X. Zou, X. Wang, X. Lu, and W. Ding, "Effect of CeO2 addition on Ni/Al2O3 catalysts for methanation of carbon dioxide with hydrogen", J Nat Gas Chem, Vol. 21, No. 6, 2012, pp. 703-707, doi: https://doi.org/10.1016/S1003-9953(11)60422-2.
  21. C. Campbell and D. Goodman, "A surface science investigation of the role of potassium promoters in nickel catalysts for CO hydrogenation", Surf Sci, Vol. 123, 1982, pp. 413-426, doi: https://doi.org/10.1016/0039-6028(82)90337-5.
  22. S. Xiong, X. Jinghua, L. Binglian, D. Hongmin, H. Baolin, and H. Yanqiang, "Catalytic carbon dioxide hydrogenation to methane: a review of recent studies", Journal of energy chemistry, Vol. 25, No. 4, 2016, pp. 553-565, doi: https://doi.org/10.1016/j.jechem.2016.03.009.
  23. C. Isabelle, B. Alain, C. Albin, T. Sebastien, and R. Anne-Cecile, "Carbon dioxide methanation kinetic model on a commercial Ni/Al2O3 catalyst", Journal of CO2 Utilization, Vol. 34, 2019, pp. 256-265, doi: https://doi.org/10.1016/j.jcou.2019.05.030.
  24. H. Feiyang, T. Sai, L. Kun, C. Cheng-Meng, S. Fang-Yuan, Z. Jian, H. Zhang, W. Xuewen, F. Gang, and Z. Rongbin, "Reduced graphene oxide supported Ni-Ce catalysts for CO2 methanation: the support and ceria promotion effects", Journal of CO2 Utilization, Vol. 34, 2019, pp. 676-687, doi: https://doi.org/10.1016/j.jcou.2019.08.020.
  25. J. Haoxi, G. Qiang, W. Shutian, C. Yife, and .Z Minhua, "The synergistic effect of Pd NPs and UiO-66 for enhanced activity of carbon dioxide methanation", Journal of CO2 Utilization, Vol. 31, 2019, pp.167-172, doi: https://doi.org/10.1016/j.jcou.2019.03.011.
  26. O. Zhiliang, Q. Changlei, N. Juntian, Z. Lihui, and R. Jingyu, "A comprehensive DFT study of CO2 catalytic conversion by H2 over Pt-doped Ni catalysts", Journal of hydrogen energy, Vol. 44, No. 2, 2019, pp. 819-834, doi: https://doi.org/10.1016/j.ijhydene.2018.11.008.
  27. J. Y. Lim, J. McGregor, A. J. Sederman, and J. S. Dennis, "Kinetic studies of CO2 methanation over a Ni/γ-Al2O3 catalyst using a batch reactor", Chemical Engineering Science, Vol. 141, 2016, pp. 28-45, doi: https://doi.org/10.1016/j.ces.2015.10.026.
  28. A. Westermann, B. Azambre, M. C. Bacariza, I. Graca, M. F. Ribeiro, J. M. Lopes, and C. Henriques, "Insight into CO2 methanation mechanism over Ni-USY zeolites: anoperandoIR study", Applied Catalysis B: Environmental, Vol. 174-175, 2015, pp.120-125, doi: https://doi.org/10.1016/j.apcatb.2015.02.026.
  29. C.V. Miguel, A. Mendes, and L.M. Madeira, "Intrinsic kinetics of CO2 methanation over an industrial nickel-based catalyst", Journal of CO2 Utilization, Vol. 25, 2018, pp. 128-136, doi: https://doi.org/10.1016/j.jcou.2018.03.011.
  30. L. Yanping, Z. Hui, Z. Lianhong, and Z. Han, "Bimetallic NiePd/SBA-15 alloy as an effectivecatalyst for selective hydrogenation of CO2 to methane", International Journal of Hydrogen Energy, Vol. 44, No. 26, 2019, pp. 13354-13363, doi: https://doi.org/10.1016/j.ijhydene.2019.03.276.
  31. W. Li, H. Wang, Z. Jiang, J. Zhu, Z. Liu, X. Guo, and C. Song, "A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts", RSC Adv, Vol. 14, 2018, pp. 7651-7669, Retrieved from https://pubs.rsc.org/en/content/articlelanding/2018/ra/c7ra13546g.
  32. W. Li, H.Wang, Z. Jiang, J. Zhu, Z. Liu, X. Guo, and C. Song, "A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts", RSC Adv, Vol. 14, 2018, pp. 7651-7669, Retrieved from https://pubs.rsc.org/en/content/articlelanding/2018/ra/c7ra13546g.
  33. D. B. Han, Y. J. kim, H. S. Byun, W. J. Cho, and Y. S. Baek, "CO2 Methanation of Biogas over 20 wt% Ni-Mg-Al Catalyst: on the Effect of N2, CH4, and O2 on CO2 Conversion Rate", Catalysts, Vol. 10, No. 10, 2020, pp. 1201, doi: https://doi.org/10.3390/catal10101201.
  34. M. Benjamin, W.P. Carvalho, M. Stefan, K. Wolfgang, and G. Jan-Dierk, "Methanation of CO2: structural response of a Ni-based catalyst underfluctuating reaction conditions unraveled byoperandospectroscopy", Journal of Catalysis, Vol. 327, 2015, pp.48-53, doi: https://doi.org/10.1016/j.jcat.2015.04.006.
  35. M. J. Mohammad, A. N. Mohamad, and T. W. Paul, "Parametric study of CO2 methanation for synthetic natural gas production", Energy technology, Vol. 7, No. 11, 2019, pp. 1990795, doi: https://doi.org/10.1002/ente.201900795.
  36. X, Jia, X. Zhang, N. Rui, X. Hu, and C. J. Liu, "Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity", Applied Catalysis B: Environmental, Vol. 244, 2019, pp. 159-169, doi: https://doi.org/10.1016/j.apcatb.2018.11.024.
  37. L. Jurgensen, E.A Ehimen, J. Born, and J. B. Holm-Nielsen, "Dynamic biogas upgrading based on the sabatier process: thermodynamic and dynamic process simulation", Bioresour. Technol, Vol. 178, 2015, pp. 323-329, doi: https://doi.org/10.1016/j.biortech.2014.10.069.
  38. V. M. Vlasenko, G. E. Yuzefovich, and M. T. Rusov, "Kinet. Catal.", USER, Vol. 6, 1965, pp. 938.
  39. J. Gao, Y. Wang, Y. Ping, D. Hu, G. Xu, F. Gu, and F. Su, "A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas", RSC Adv, Vol. 2, 2012, pp. 2358-2368, doi: https://doi.org/10.1039/C2RA00632D.