Browse > Article
http://dx.doi.org/10.20307/nps.2021.27.3.187

Optimization of Cultivation and Extraction Conditions of Pupae-Cordyceps for Cordycepin Production  

Turk, Ayman (College of Pharmacy, Chungbuk National University)
Kim, Beom Seok (C&G Agricultural Association)
Ko, Sung Min (College of Pharmacy, Chungbuk National University)
Yeon, Sang Won (College of Pharmacy, Chungbuk National University)
Ryu, Se Hwan (College of Pharmacy, Chungbuk National University)
Kim, Young-Guk (Doobon Inc)
Hwang, Bang Yeon (College of Pharmacy, Chungbuk National University)
Lee, Mi Kyeong (College of Pharmacy, Chungbuk National University)
Publication Information
Natural Product Sciences / v.27, no.3, 2021 , pp. 187-192 More about this Journal
Abstract
Cordycepin is a characteristic bioactive compound of Cordyceps militaris with various beneficial effects. Cordyceps grows on both grains and insects, and the content of cordycepin varies depending on the cultivation conditions. In this study, the effect of culture conditions on the cordycepin content was analyzed and the extraction conditions were optimized. Analysis of cordycepin content in Pupae-Cordyceps found that it was highly affected by temperature in culture conditions. In the case of mycelium, it grows well at 20 and 25 ℃, but not at 30 ℃. However, the content of cordycepin was highest at 30℃ and less at 20 ℃. The fruiting body also showed a similar tendency: growth was 20 ℃ > 25 ℃ > 30 ℃, but the cordycepin content was 30 ℃ > 25 ℃ > 20 ℃. The content of cordycepin decreased after the fruiting bodies were produced. Next, extraction conditions such as solvent and time were optimized for maximum cordycepin content using response surface methodology (RSM). There was a large difference in the content of cordycepin according to the content of ethanol and the extraction temperature. Through RSM, it was confirmed that the optimum condition for extraction of cordycepin was 48.9 ℃ using 49.0% ethanol, and 160.9 mg/g extract could be obtained under this condition. In conclusion, this study suggested the optimized conditions for the cultivation and extraction of Pupae-Cordyceps for maximizing the content of cordycepin, and this may be applied to the discovery of materials using cordycepin.
Keywords
Pupae-Cordyceps; cordycepin; cultivation conditions; temperature; optimization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim, M. J.; Ahn, J. H.; Kim, S. B.; Jo, Y. H.; Liu, Q.; Hwang, B. Y.; Lee, M. K. Nat. Prod. Sci. 2016, 22, 270-274.   DOI
2 Ahn, J. H.; Mo, E. J.; Jo, Y. H.; Kim, S. B.; Hwang, B. Y.; Lee, M. K. Biosci. Biotechnol. Biochem. 2017, 81, 1973-1977.   DOI
3 Huang, S. J.; Huang, F. K.; Purwidyantri, A.; Rahmandita, A.; Tsai, S. Y. Int. J. Med. Mushrooms 2017, 19, 547-560.   DOI
4 Tao, S. X.; Xue, D.; Lu, Z. H.; Huang, H. L. Int. J. Med. Mushrooms 2020, 22, 55-63.   DOI
5 Kim, S. B.; Ahn, B.; Kim, M.; Ji, H. J.; Shin, S. K.; Hong, I. P.; Kim, C. Y.; Hwang, B. Y.; Lee, M. K. J. Ethnopharmacol. 2014, 151, 478-484.   DOI
6 Sunagawa, M.; Magae, Y. FEMS Microbiol. Lett. 2005, 246, 279-284.   DOI
7 Bourret, R. B.; Silversmith, R. E. Curr. Opin. Microbiol. 2010, 13, 113-115.   DOI
8 Wang, F.; Song, X.; Dong, X.; Zhang, J.; Dong, C. Appl. Microbiol. Biotechnol. 2017, 101, 4645-4657.   DOI
9 Liu, T.; Liu, Z.; Yao, X.; Huang, Y.; Qu, Q.; Shi, X.; Zhang, H.; Shi, X. R. Soc. Open Sci. 2018, 5, 181247.   DOI
10 Jeong, J. Y.; Jo, Y. H.; Lee, K. Y.; Do, S. G.; Hwang, B. Y.; Lee, M. K. Bioorg. Med. Chem. Lett. 2014, 24, 2329-2333.   DOI
11 Chou, T. Y.; Kuo, H. P.; Tsai, S. F.; Huang, S. T.; Yang, M. J.; Lee, S. S.; Chang, C. C. Nat. Prod. Res. 2020, 27, 1-6.   DOI
12 Won, S. Y.; Park, E. H. J. Ethnopharmacol. 2005, 96, 555-561.   DOI
13 Cao, C.; Yang, S.; Zhou, Z. Phytother. Res. 2020, 34, 295-305.   DOI
14 Liu, Y. N.; Liu, B. Y.; Ma, Y. C.; Yang, H. L.; Liu, G. Q. PLoS One. 2020, 15, e0236898.   DOI
15 Zhu, Y.; Yu, X. F.; Ge. Q.; Li, J.; Wang, D.; Wei, Y.; Ouyang, Z. Int J Biol Macromol. 2020, 157, 394-400.   DOI
16 Nakamura, K.; Yoshikawa, N.; Yamaguchi, Y.; Kagota, S.; Shinozuka, K.; Kunitomo, M. Anticancer Res. 2006, 26, 43-47.
17 Zhang, G. Y.; Yin, Q. S.; Han, T.; Zhao, Y. X.; Su, J. J.; Li, M. Z.; Ling, J. Y. Ind. Crops Prod. 2015, 69, 485-491.   DOI
18 Kim, H. G.; Shrestha, B.; Lim, S. Y.; Yoon, D. H.; Chang, W. C.; Shin, D. J.; Han, S. K.; Park, S. M.; Park, J. H.; Park, H. I.; Sung, J. M.; Jang, Y. S.; Chung, N. S.; Hwang, K. C.; Kim, T. W. Eur. J. Pharmacol. 2006, 545, 192-199.   DOI
19 Tuli, H. S.; Sharma, A. K.; Sandhu, S. S.; Kashyap, D. Life Sci. 2013, 93, 863-869.   DOI
20 Yang, R.; Wang, X. L.; Xi, D. S.; Mo, J.; Wang, K.; Luo, S.; Wei, J.; Ren, Z.; Pang, H.; Luo, Y. Inflammation 2020, 43, 752-764.   DOI
21 Xie, C. Y.; Gu, Z. X.; Fan, G. J.; Gu, F. R.; Han, Y. B.; Chen, Z. G. Appl. Biochem. Biotechnol. 2009, 158, 483-492.   DOI
22 Yang, T.; Guo, M. M.; Yang, H. J.; Guo, S. P.; Dong, C. H. Appl. Microbiol. Biotechnol. 2016, 100, 743-755.   DOI
23 Mao, X. B.; Eksriwong, T.; Chauvatcharin, S.; Zhong, J. J. Process Biochem. 2005, 40, 1667-1672.   DOI
24 Suparmin, A.; Kato, T.; Dohra, H.; Park, E. Y. PLoS ONE 2017, 12, e0187052.   DOI
25 Krizsan, K.; Almasi, E.; Merenyi, Z.; Sahu, N.; Viragh, M.; Koszo, T.; Mondo, S.; Kiss, B.; Balint, B.; Kues, U.; Barry, K.; Cseklye, J.; Hegedus, B.; Henrissat, B.; Johnson, J.; Lipzen, A.; Ohm, R. A.; Istvan, N.; Pangilinan, J.; Yan, J.; Xiong, Y.; Grigoriev, I. V.; Hibbett, D. S.; Nagy, L. G. Proc. Nat. Acad. Sci. USA. 2019, 116, 7409-7418.   DOI