Browse > Article
http://dx.doi.org/10.7316/KHNES.2021.32.5.388

A Study on the Synthesis of CH4 from CO2 of Biogas Using 40 wt% Ni-Mg Catalyst: Characteristic Comparison of Commercial Catalyst and 40 wt% Ni Catalyt  

HAN, DANBEE (Department of Environment-Energy Engineering, The University of Suwon)
BAEK, YOUNGSOON (Department of Environment-Energy Engineering, The University of Suwon)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.32, no.5, 2021 , pp. 388-400 More about this Journal
Abstract
Power to gas (P2G) is one of the energy storage technologies that can increase the storage period and storage capacity compared to the existing battery type. One of P2G technology produces hydrogen by decomposing water from renewable energy (electricity) and the other produces CH4 by reacting hydrogen with CO2. This study is an experimental study to produce CH4 by reacting CO2 of biogas with hydrogen using a 40 wt% Ni-Mg-Al catalyst and a commercial catalyst. Catalyst characteristics were analyzed through H2-TPR, XRD, and XPS instruments of 40% Ni catalyst and commercial catalyst. The effect on the CO2 conversion rate and CH4 selectivity was analyzed, and the activities of a 40% Ni catalyst and a commercial catalyst were compared. As a result of experiment, In the case of a 40 wt% catalyst, the maximum CO2 conversion rate showed 77% at the reaction temperature of 400℃. Meanwhile, the commercial catalyst showed a maximum CO2 conversion rate of 60% at 450℃. When 50% of CO was added to the CO2 methanation reaction, the CO2 conversion rate was increased by about 5%. This is considered to be due to the atmosphere in which the CO reaction can occur without the process of converting to CH4 after forming carbon and CO as intermediates in terms of the CO2 mechanism on the catalyst surface.
Keywords
Power to gas(P2G); Biogas; CO2 methanation; Carbon dioxide; Ni catalysts; CO2 hydrogenation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Qin, C. Guo, Y. Wu, and J. Zhang, "Effect of La2O3 promoter on NiO/Al2O3 catalyst in CO methanation", Korean J Chem Eng, Vol. 31, 2014, pp. 1168-1173, doi: https://doi.org/10.1007/s11814-014-0013-7.   DOI
2 Z. Guojie, L. Jiwei, X. Ying, and S. Yinghui, "A review of CH4-CO2 reforming to synthesis gasover Ni-based catalysts in recent years (2010-2017)", International Journal of Hydrogen Energy, Vol. 43, No. 32, 2018, pp. 15030-15054, doi: https://doi.org/10.1016/j.ijhydene.2018.06.091.   DOI
3 S. Alfredo, F. Jose, A. Armando, and C. Juan, "Participation of surface bicarbonate, formate and methoxy species in the carbon dioxide methanation catalyzed by ZrO2-supported Ni", Applied Catalysis B: Environmental, Vol. 218, 2017, pp. 611-620, doi: https://doi.org/10.1016/j.apcatb.2017.06.063.   DOI
4 C. Campbell and D. Goodman, "A surface science investigation of the role of potassium promoters in nickel catalysts for CO hydrogenation", Surf Sci, Vol. 123, 1982, pp. 413-426, doi: https://doi.org/10.1016/0039-6028(82)90337-5.   DOI
5 E. Kok , J. Scott, N. Cant and D. Trimm, "The impact of ruthenium, lanthanum and activation conditions on the methanation activity of alumina-supported cobalt catalysts" Catal Today, Vol. 164, No. 1, 2011, pp. 297-301, doi: https://doi.org/10.1016/j.cattod.2010.11.011.   DOI
6 S. G. Edwin C. Narendraraj, V. K. Ivan, G. Aida, V. Enrique, S. Antonio, and N. Raveendran, "Highly efficient nickel-niobia composite catalysts for hydrogenation of CO2 to methane", Chemical Engineering Science, Vol. 194, 2019, pp. 2-9, doi: https://doi.org/10.1016/j.ces.2018.08.038.   DOI
7 G. Wojciech, Z. Witold, S. Grzegorz, S. Andrzej, and K. Agnieszka, "Nickel catalysts supported on silica microspheres for CO2 methanation", Microporous and Mesoporous Materials, Vol. 272, 2018, pp. 79-91, doi: https://doi.org/10.1016/j.micromeso.2018.06.022.   DOI
8 B. Zhoufeng, M. C. Yi, Y. Yang, and K. Sibudjing, "Morphology dependence of catalytic properties of Ni/CeO2 for CO2 methanation: a kinetic and mechanism study", Catalysis Today, Vol. 347, 2020, pp. 31-38, doi: https://doi.org/10.1016/j.cattod.2018.04.067.   DOI
9 E. E. Benson, C. P. Kubiak, A. J. Sathrum, and J. M. Smieja, "Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels" Chem. Soc. Rev. Vol. 38, 2009, pp. 89-99, doi: https://doi.org/10.1039/B804323J.   DOI
10 "InfoMine: Mining Intelligence & Technology".
11 C. Isabelle, B. Alain, C. Albin, T. Sebastien, and R. Anne-Cecile, "Carbon dioxide methanation kinetic model on a commercial Ni/Al2O3 catalyst", Journal of CO2 Utilization, Vol. 34, 2019, pp. 256-265, doi: https://doi.org/10.1016/j.jcou.2019.05.030.   DOI
12 Q. Liu, F. Gu, X. Lu, Y. Liu, H. Li, Z. Zhong, G. Xu, and F. Su, "Enhanced catalytic performances of Ni/Al2O3 catalyst via addition of V2O3 for CO methanation" Appl Catal A, Vol. 488, 2014, pp. 37-47, doi: https://doi.org/10.1016/j.apcata.2014.09.028.   DOI
13 H. Liu, X. Zou, X. Wang, X. Lu, and W. Ding, "Effect of CeO2 addition on Ni/Al2O3 catalysts for methanation of carbon dioxide with hydrogen", J Nat Gas Chem, Vol. 21, No. 6, 2012, pp. 703-707, doi: https://doi.org/10.1016/S1003-9953(11)60422-2.   DOI
14 S. Xiong, X. Jinghua, L. Binglian, D. Hongmin, H. Baolin, and H. Yanqiang, "Catalytic carbon dioxide hydrogenation to methane: a review of recent studies", Journal of energy chemistry, Vol. 25, No. 4, 2016, pp. 553-565, doi: https://doi.org/10.1016/j.jechem.2016.03.009.   DOI
15 G. H. Watson, "Methanation catalysts", IEA Coal Research, 1980.
16 J. Haoxi, G. Qiang, W. Shutian, C. Yife, and .Z Minhua, "The synergistic effect of Pd NPs and UiO-66 for enhanced activity of carbon dioxide methanation", Journal of CO2 Utilization, Vol. 31, 2019, pp.167-172, doi: https://doi.org/10.1016/j.jcou.2019.03.011.   DOI
17 H. Feiyang, T. Sai, L. Kun, C. Cheng-Meng, S. Fang-Yuan, Z. Jian, H. Zhang, W. Xuewen, F. Gang, and Z. Rongbin, "Reduced graphene oxide supported Ni-Ce catalysts for CO2 methanation: the support and ceria promotion effects", Journal of CO2 Utilization, Vol. 34, 2019, pp. 676-687, doi: https://doi.org/10.1016/j.jcou.2019.08.020.   DOI
18 G. Mills and F. Steffgen, "Catalytic methanation", Catal Rev, Vol. 8, No. 1, 1974, pp. 159-210, doi: https://doi.org/10.1080/01614947408071860.   DOI
19 M. Fan, K. Miao, J. Lin, H. Zhang, and D. Liao. "Mg-Al oxide supported Ni catalysts with enhanced stability for efficient synthetic natural gas from syngas", Appl Surf Sci, Vol. 307, 2014, pp. 682-688, doi: https://doi.org/10.1016/j.apsusc.2014.04.098.   DOI
20 B. Wang, Y. Yao, M. Jiang, Z. Li, X. Ma, S. Qin, and Q. Sun, "Effect of cobalt and its adding sequence on the catalytic performance of MoO3/Al2O3 toward sulfur-resistant methanation", J Energy Chem, Vol. 23, No. 1, 2014, pp. 35-42, doi: https://doi.org/10.1016/S2095-4956(14)60115-7.   DOI
21 O. Zhiliang, Q. Changlei, N. Juntian, Z. Lihui, and R. Jingyu, "A comprehensive DFT study of CO2 catalytic conversion by H2 over Pt-doped Ni catalysts", Journal of hydrogen energy, Vol. 44, No. 2, 2019, pp. 819-834, doi: https://doi.org/10.1016/j.ijhydene.2018.11.008.   DOI
22 A. Westermann, B. Azambre, M. C. Bacariza, I. Graca, M. F. Ribeiro, J. M. Lopes, and C. Henriques, "Insight into CO2 methanation mechanism over Ni-USY zeolites: anoperandoIR study", Applied Catalysis B: Environmental, Vol. 174-175, 2015, pp.120-125, doi: https://doi.org/10.1016/j.apcatb.2015.02.026.   DOI
23 M. J. Mohammad, A. N. Mohamad, and T. W. Paul, "Parametric study of CO2 methanation for synthetic natural gas production", Energy technology, Vol. 7, No. 11, 2019, pp. 1990795, doi: https://doi.org/10.1002/ente.201900795.   DOI
24 W. Li, H. Wang, Z. Jiang, J. Zhu, Z. Liu, X. Guo, and C. Song, "A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts", RSC Adv, Vol. 14, 2018, pp. 7651-7669, Retrieved from https://pubs.rsc.org/en/content/articlelanding/2018/ra/c7ra13546g.
25 W. Li, H.Wang, Z. Jiang, J. Zhu, Z. Liu, X. Guo, and C. Song, "A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts", RSC Adv, Vol. 14, 2018, pp. 7651-7669, Retrieved from https://pubs.rsc.org/en/content/articlelanding/2018/ra/c7ra13546g.
26 M. Benjamin, W.P. Carvalho, M. Stefan, K. Wolfgang, and G. Jan-Dierk, "Methanation of CO2: structural response of a Ni-based catalyst underfluctuating reaction conditions unraveled byoperandospectroscopy", Journal of Catalysis, Vol. 327, 2015, pp.48-53, doi: https://doi.org/10.1016/j.jcat.2015.04.006.   DOI
27 L. Jurgensen, E.A Ehimen, J. Born, and J. B. Holm-Nielsen, "Dynamic biogas upgrading based on the sabatier process: thermodynamic and dynamic process simulation", Bioresour. Technol, Vol. 178, 2015, pp. 323-329, doi: https://doi.org/10.1016/j.biortech.2014.10.069.   DOI
28 L. Yanping, Z. Hui, Z. Lianhong, and Z. Han, "Bimetallic NiePd/SBA-15 alloy as an effectivecatalyst for selective hydrogenation of CO2 to methane", International Journal of Hydrogen Energy, Vol. 44, No. 26, 2019, pp. 13354-13363, doi: https://doi.org/10.1016/j.ijhydene.2019.03.276.   DOI
29 J. Y. Lim, J. McGregor, A. J. Sederman, and J. S. Dennis, "Kinetic studies of CO2 methanation over a Ni/γ-Al2O3 catalyst using a batch reactor", Chemical Engineering Science, Vol. 141, 2016, pp. 28-45, doi: https://doi.org/10.1016/j.ces.2015.10.026.   DOI
30 V. M. Vlasenko, G. E. Yuzefovich, and M. T. Rusov, "Kinet. Catal.", USER, Vol. 6, 1965, pp. 938.
31 D. B. Han, Y. J. kim, H. S. Byun, W. J. Cho, and Y. S. Baek, "CO2 Methanation of Biogas over 20 wt% Ni-Mg-Al Catalyst: on the Effect of N2, CH4, and O2 on CO2 Conversion Rate", Catalysts, Vol. 10, No. 10, 2020, pp. 1201, doi: https://doi.org/10.3390/catal10101201.   DOI
32 C.V. Miguel, A. Mendes, and L.M. Madeira, "Intrinsic kinetics of CO2 methanation over an industrial nickel-based catalyst", Journal of CO2 Utilization, Vol. 25, 2018, pp. 128-136, doi: https://doi.org/10.1016/j.jcou.2018.03.011.   DOI
33 X, Jia, X. Zhang, N. Rui, X. Hu, and C. J. Liu, "Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity", Applied Catalysis B: Environmental, Vol. 244, 2019, pp. 159-169, doi: https://doi.org/10.1016/j.apcatb.2018.11.024.   DOI
34 J. Gao, Y. Wang, Y. Ping, D. Hu, G. Xu, F. Gu, and F. Su, "A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas", RSC Adv, Vol. 2, 2012, pp. 2358-2368, doi: https://doi.org/10.1039/C2RA00632D.   DOI
35 L. Wenhui, L. Yi, M. Minchen, D. Fanshu, L. Zhongmin, G. Xinwen, and S. Chunshan, "Organic acid-assisted preparation of highly dispersed Co/ZrO2 catalysts with superior activity for CO2 methanation", Applied Catalysis B: Environmental, Vol. 254, 2019, pp. 531-540, doi: https://doi.org/10.1016/j.apcatb.2019.05.028.   DOI
36 J. B. Powell and S. H. Langer, "Low-temperature methanation and fischer-tropsch activity over supported ruthenium, nickel, and cobalt catalysts", J Catal, Vol. 94, 1985, pp. 556-569, doi: https://doi.org/10.1016/0021-9517(85)90222-2.   DOI
37 P. Gerard and A. Beenackers, "Kinetics and selectivity of fischer-tropsch synthesis: a literature review', Catal Rev - Sci Eng, Vol. 41, No. 3-4, 1999, pp. 255-318, doi: https://doi.org/10.1081/CR-100101170.   DOI
38 J. Gao, Q. Liu , F. Gu, B. Liu, Z. Zhong, and F. Su, "Recent advances in methanation catalysts for the production of synthetic natural gas", RSC Adv, Vol. 29, 2015, pp. 22759-22776, doi: https://doi.org/10.1039/C4RA16114A.   DOI
39 G. Iglesias, C. de Vries, M. Claeys, and G. Schaub, "Chemical energy storage in gaseous hydrocarbons via iron Fischer-Tropsch synthesis from H2/CO2 -kinetics, selectivity and process considerations", Catal Today, Vol. 242, 2015, pp. 184-192, doi: https://doi.org/10.1016/j.cattod.2014.05.020.   DOI