Browse > Article
http://dx.doi.org/10.12989/mwt.2019.10.6.471

Performance evaluation of organic matter adsorption from actual graywater using GAC: OrbitrapTM MS and optimization  

Ligaray, Mayzonee (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
Kim, Minjeong (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
Shim, Jaegyu (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
Park, Jongkwan (School of Civil, Environmental and Chemical Engineering, Changwon National University)
Cho, Kyung Hwa (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
Publication Information
Membrane and Water Treatment / v.10, no.6, 2019 , pp. 471-484 More about this Journal
Abstract
The complex combination of organic contaminants in the wastewater made water treatment challenging; hence, organic matter in water bodies is usually measured in terms of organic carbon. Since it is important to identify the types of compounds when deciding suitable treatment methods, this study implemented a quantitative and qualitative analysis of the organic matter content in an actual graywater sample from Ulsan, Republic of Korea using mass spectroscopy (MS). The graywater was treated using adsorption to remove the organic contaminants. Using orbitrap MS, the organic matter content between an untreated graywater and the treated effluent were compared which yielded a significant formula count difference for the samples. It was revealed that CHON formula has the highest removal count. Isotherm studies found that the Freundlich equation was the best fit with a coefficient of determination ($R^2$) of 0.9705 indicating a heterogenous GAC surface with a multilayer characteristic. Kinetics experiments fit the pseudo-second order equation with an $R^2$ of 0.9998 implying that chemisorption is the rate-determining step between the organic compounds and GAC at rate constant of $52.53g/mg{\cdot}h$. At low temperatures, the reaction between GAC and organic compounds were found to be spontaneous and exothermic. The conditions for optimization were set to achieve a maximum DOC and TN removal which yielded removal percentages of 94.59% and 80.75% for the DOC and TN, respectively. The optimum parameter values are the following: pH 6.3, 2.46 g of GAC for every 30 mL of graywater sample, 23.39 hrs contact time and $38.6^{\circ}C$.
Keywords
GAC adsorption; organic matter contaminant; Orbitrap MS analysis;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Inyinbor, A.A., Adekola, F.A. and Olatunji, G.A. (2016), "Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp", Water Resourc. Industry, 15, 14-27. https://doi.org/10.1016/j.wri.2016.06.001.   DOI
2 Jiang, S.K., Zhang, G.M., Yan, L. and Wu, Y. (2018), "Treatment of natural rubber wastewater by membrane technologies for water reuse", Membr. Water Treat., 9(1), 17-21. https://doi.org/10.12989/mwt.2018.9.1.017.   DOI
3 Xing, W., Ngo, H.H., Kim, S.H., Guo, W.S. and Hagare, P. (2008), "Adsorption and bioadsorption of granular activated carbon (GAC) for dissolved organic carbon (DOC) removal in wastewater", Bioresource Technol., 99(18), 8674-8678. https://doi.org/10.1016/j.biortech.2008.04.012.   DOI
4 Ye, L., Cai, Q.H., Liu, R.Q. and Cao, M. (2009), "The influence of topography and land use on water quality of Xiangxi River in Three Gorges Reservoir region", Environ. Geology, 58(5), 937-942. https://doi.org/10.1007/s00254-008-1573-9.   DOI
5 Yu, H., Song, Y., Liu, R., Pan, H., Xiang, L. and Qian, F. (2014), "Identifying changes in dissolved organic matter content and characteristics by fluorescence spectroscopy coupled with selforganizing map and classification and regression tree analysis during wastewater treatment", Chemosphere, 113, 79-86. https://doi.org/10.1016/j.chemosphere.2014.04.020.   DOI
6 Khan, M. I., Wu, L., Mondal, A. N., Yao, Z., Ge, L. and Xu, T. (2016), "Adsorption of methyl orange from aqueous solution on anion exchange membranes: Adsorption kinetics and equilibrium", Membr. Water Treat., 7(1), 23-38. https://doi.org/10.12989/mwt.2016.7.1.023.   DOI
7 Kalteh, A. M., Hiorth, P. and Bemdtsson, R. (2008), "Review of the self-organizing map (SOM) approach in water resources:Analysis, modelling and application", Environ. Modelling Software, 23(7), 835-845. https://doi.org/10.1016/j.envsoft.2007.10.001.   DOI
8 Khaleel, M.R., Ahsan, A., Imteaz, M., El-Sergany, M., Daud, N. N., Mohamed, T. and Ibrahim, B.A. (2015), "Performance of GACC and GACP to treat institutional wastewater: A sustainable technique", Membr. Water Treat., 6(4), 339-349. https://doi.org/10.12989/mwt.2015.6.4.339.   DOI
9 Khan, M.I., Ansari, T.M., Zafar, S., Buzdar, A.R., Khan, M.A., Mumtaz, F., Prapamonthon, P. and Akhtar, M. (2018), "Acid green-25 removal from wastewater by anion exchange membrane: Adsorption kinetic and thermodynamic studies", Membr. Water Treat., 9(2), 79-85. https://doi.org/10.12989/mwt.2018.9.2.079.   DOI
10 Kim, M., Baek, S., Ligaray, M., Pyo, J., Park, M. and Cho, K.H. (2015), "Comparative studies of different imputation methods for recovering streamflow observation", Water, 7(12), 6847-6860. https://doi.org/10.3390/w7126663.   DOI
11 Lopez Garcia, H. and Machon Gonzalez, I. (2004), "Selforganizing map and clustering for wastewater treatment monitoring", Eng. Appl. Artificial Intelligence, 17(3), 215-225. https://doi.org/10.1016/j.engappai.2004.03.004.   DOI
12 Zietzschmann, F., Stutzer, C. and Jekel, M. (2016), "Granular activated carbon adsorption of organic micro-pollutants in drinking water and treated wastewater - Aligning breakthrough curves and capacities", Water Res., 92, 180-187. https://doi.org/10.1016/j.watres.2016.01.056.   DOI
13 Kosjek, T. and Heath, E. (2008), "Applications of mass spectrometry to identifying pharmaceutical transformation products in water treatment", TrAC Trends Analytical Chem., 27(10), 807-820. https://doi.org/10.1016/j.trac.2008.08.014.   DOI
14 Lee, K., Jutidamrongphan, W., Lee, S. and Park, K.Y. (2017), "Adsorption kinetics and isotherms of phosphate and its removal from wastewater using mesoporous titanium oxide", Membr. Water Treat., 8(2), 161-169. https://doi.org/10.12989/mwt.2017.8.2.161.   DOI
15 Li, J.R., Kuppler, R.J. and Zhou, H.C. (2009), "Selective gas adsorption and separation in metal-organic frameworks", Chem. Soc. Rev., 38(5), 1477-1504. https://doi.org/10.1039/B802426J.   DOI
16 Ligaray, M., Futalan, C.M., de Luna, M.D. and Wan, M.W. (2018), "Removal of chemical oxygen demand from thin-film transistor liquid-crystal display wastewater using chitosan-coated bentonite: Isotherm, kinetics and optimization studies", J. Cleaner Production, 175, 145-154. https://doi.org/10.1016/j.jclepro.2017.12.052.   DOI
17 Liu, Q.S., Zheng, T., Wang, P., Jiang, J.P. and Li, N. (2010), "Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers", Chem. Eng. J., 157(2), 348-356. https://doi.org/10.1016/j.cej.2009.11.013.   DOI
18 Liu, Y. and Shen, L. (2008), "From Langmuir Kinetics to Firstand Second-Order Rate Equations for Adsorption", Langmuir, 24(20), 11625-11630. https://doi.org/10.1021/la801839b.   DOI
19 Ahmed, M.M., Brienza, M., Goetz, V. and Chiron, S. (2014), "Solar photo-Fenton using peroxymonosulfate for organic micropollutants removal from domestic wastewater: Comparison with heterogeneous TiO2 photocatalysis", Chemosphere, 117, 256-261. https://doi.org/10.1016/j.chemosphere.2014.07.046.   DOI
20 Alighardashi, A., Pakan, M., Jamshidi, S. and Shariati, F.P. (2017), "Performance evaluation of membrane bioreactor (MBR) coupled with activated carbon on tannery wastewater treatment", Membr. Water Treat., 8(6), 517-528. https://doi.org/10.12989/mwt.2017.8.6.517.   DOI
21 Lv, J., Zhang, S., Wang, S., Luo, L., Cao, D. and Christie, P. (2016), "Molecular-Scale Investigation with ESI-FT-ICR-MS on Fractionation of Dissolved Organic Matter Induced by Adsorption on Iron Oxyhydroxides", Environ. Sci. Technol., 50(5), 2328-2336. https://doi.org/10.1021/acs.est.5b04996.   DOI
22 Maizel, A.C. and Remucal, C.K. (2017), "The effect of advanced secondary municipal wastewater treatment on the molecular composition of dissolved organic matter", Water Res., 122, 42-52. https://doi.org/10.1016/j.watres.2017.05.055.   DOI
23 Majer, W.J. and Swain, W.R. (1978), "Organic carbon-a nonspecific water quality indicator for Lake Superior", Water Res., 12(8), 523-529. https://doi.org/10.1016/0043-1354(78)90128-8.   DOI
24 Mangal, V., Stock, N.L. and Gueguen, C. (2016), "Molecular characterization of phytoplankton dissolved organic matter (DOM) and sulfur components using high resolution Orbitrap mass spectrometry", Analytical Bioanalytical Chem., 408(7), 1891-1900. https://doi.org/10.1007/s00216-015-9295-9.   DOI
25 Cao, D. H., Nguyen, N. H., Nguyen, P. D., Bui, X. T., Kwon, J., Shin, H.S. and Lee, E. (2012), "Application of upflow multilayer bioreactor (UMBR) for domestic wastewater treatment in HCMC", Membr. Water Treat., 3(2), 113-121. https://doi.org/10.12989/mwt.2012.3.2.113.   DOI
26 Baek, S., Lee, H., Park, J. and Cho, K.H. (2019), "Investigating influence of hydrological regime on organic matters characteristic in a Korean watershed", Water, 11(3), 512. https://doi.org/10.3390/w11030512.   DOI
27 Barber, L.B., Keefe, S.H., Brown, G.K., Furlong, E.T., Gray, J.L., Kolpin, D.W., Meyer, M.T., Sandstrom, M.W. and Zaugg, S.D. (2013), "Persistence and potential effects of complex organic contaminant mixtures in wastewater-impacted streams", Environ. Sci. Technol., 47(5), 2177-2188. https://doi.org/10.1021/es303720g.   DOI
28 Bieroza, M., Baker, A. and Bridgeman, J. (2011), "Classification and calibration of organic matter fluorescence data with multiway analysis methods and artificial neural networks: an operational tool for improved drinking water treatment", Environmetrics, 22(3), 256-270. https://doi.org/10.1002/env.1045.   DOI
29 Bijlsma, L., Emke, E., Hernandez, F. and de Voogt, P. (2012), "Investigation of drugs of abuse and relevant metabolites in Dutch sewage water by liquid chromatography coupled to high resolution mass spectrometry". Chemosphere, 89(11), 1399-1406. https://doi.org/10.1016/j.chemosphere.2012.05.110.   DOI
30 Bijlsma, L., Emke, E., Hernandez, F. and de Voogt, P. (2013), "Performance of the linear ion trap Orbitrap mass analyzer for qualitative and quantitative analysis of drugs of abuse and relevant metabolites in sewage water", Analytica Chimica Acta, 768, 102-110. https://doi.org/10.1016/j.aca.2013.01.010.   DOI
31 Cheng, W., Dastgheib, S. A. and Karanfil, T. (2005), "Adsorption of dissolved natural organic matter by modified activated carbons", Water Res., 39(11), 2281-2290. https://doi.org/10.1016/j.watres.2005.01.031.   DOI
32 Retelletti Brogi, S., Ha, S.Y., Kim, K., Derrien, M., Lee, Y.K. and Hur, J. (2018), "Optical and molecular characterization of dissolved organic matter (DOM) in the Arctic ice core and the underlying seawater (Cambridge Bay, Canada): Implication for increased autochthonous DOM during ice melting", Sci. Total Environ., 627, 802-811. https://doi.org/10.1016/j.scitotenv.2018.01.251.   DOI
33 Nguyen, L.N., Hai, F.I., Kang, J., Price, W.E. and Nghiem, L.D. (2012), "Removal of trace organic contaminants by a membrane bioreactor-granular activated carbon (MBR-GAC) system", Bioresource Technol., 113, 169-173. https://doi.org/10.1016/j.biortech.2011.10.051.   DOI
34 Nguyen, L.N., Hai, F.I., Kang, J., Price, W.E. and Nghiem, L.D. (2013), "Coupling granular activated carbon adsorption with membrane bioreactor treatment for trace organic contaminant removal: Breakthrough behaviour of persistent and hydrophilic compounds", J. Environ. Management, 119, 173-181. https://doi.org/10.1016/j.jenvman.2013.01.037.   DOI
35 Pico, Y. and Barcelo, D. (2015), "Transformation products of emerging contaminants in the environment and high-resolution mass spectrometry: A new horizon", Analytical Bioanalytical Chemistry, 407(21), 6257-6273. https://doi.org/10.1007/s00216-015-8739-6.   DOI
36 Rojas-Serrano, F., Alvarez-Arroyo, R., Perez, J.I., Plaza, F., Garralon, G. and Gomez, M.A. (2015), "Ultrafiltration membranes for drinking-water production from low-quality surface water: A case study in Spain", Membr. Water Treat., 6(1), 77-94. https://doi.org/10.12989/mwt.2015.6.1.077.   DOI
37 Saka, C. (2012), "BET, TG-DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2", J. Analytical Appl. Pyrolysis, 95, 21-24. https://doi.org/10.1016/j.jaap.2011.12.020.   DOI
38 Dogan, M. and Alkan, M. (2003), "Adsorption kinetics of methyl violet onto perlite", Chemosphere, 50(4), 517-528. https://doi.org/10.1016/S0045-6535(02)00629-X.   DOI
39 Dada, A., Olalekan, A., Olatunya, A. and Dada, O. (2012), "Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk", IOSR J. Appl. Chem., 3(1), 38-45. https://doi.org/10.9790/5736-0313845.   DOI
40 Deng, Y., Li, B., Yu, K. and Zhang, T. (2016), "Biotransformation and adsorption of pharmaceutical and personal care products by activated sludge after correcting matrix effects", Sci. Total Environ., 544, 980-986. https://doi.org/10.1016/j.scitotenv.2015.12.010.   DOI
41 Dogan, M., Alkan, M., Turkyilmaz, A. and Ozdemir, Y. (2004), "Kinetics and mechanism of removal of methylene blue by adsorption onto perlite", J. Hazardous Mater., 109(1), 141-148. https://doi.org/10.1016/j.jhazmat.2004.03.003.   DOI
42 El-Aneed, A., Cohen, A. and Banoub, J. (2009), "Mass Spectrometry, Review of the Basics: Electrospray, MALDI and Commonly Used Mass Analyzers", Appl. Spectroscopy Rev., 44(3), 210-230. https://doi.org/10.1080/05704920902717872.   DOI
43 Eriksson, E., Auffarth, K., Henze, M. and Ledin, A. (2002), "Characteristics of grey wastewater", Urban Water, 4(1), 85-104. https://doi.org/10.1016/S1462-0758(01)00064-4.   DOI
44 Garcia, H.L. and Gonzalez, I.M. (2004), "Self-organizing map and clustering for wastewater treatment monitoring", Eng. Appl. Artificial Intelligence, 17(3), 215-225. https://doi.org/10.1016/j.engappai.2004.03.004.   DOI
45 Son, J., Vavra, J. and Forbes, V.E. (2015), "Effects of water quality parameters on agglomeration and dissolution of copper oxide nanoparticles (CuO-NPs) using a central composite circumscribed design", Sci. Total Environ., 521-522, 183-190. https://doi.org/10.1016/j.scitotenv.2015.03.093.   DOI
46 Sanchis, J., Oliveira, L.F.S., de Leao, F.B., Farre, M. and Barcelo, D. (2015), "Liquid chromatography-atmospheric pressure photoionization-Orbitrap analysis of fullerene aggregates on surface soils and river sediments from Santa Catarina (Brazil)", Sci. Total Environ., 505, 172-179. https://doi.org/10.1016/j.scitotenv.2014.10.006.   DOI
47 Schollee, J.E., Schymanski, E.L., Avak, S.E., Loos, M. and Hollender, J. (2015), "Prioritizing unknown transformation products from biologically-treated wastewater using highresolution mass spectrometry, Multivariate Statistics and Metabolic Logic", Analytical Chem., 87(24), 12121-12129. https://doi.org/10.1021/acs.analchem.5b02905.   DOI
48 Sing, K.S., Everett, D.H., Haul, R., Moscou, L., Pierotti, R.A., Rouquerol, J. and Siemieniewska, T. (2008), "Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity", Pure Appl. Chem.istry. 57(4), 603-619. https://doi.org/10.1351/pac198557040603.
49 Talarposhti, A.M., Donnelly, T. and Anderson, G.K. (2001), "Colour removal from a simulated dye wastewater using a twophase Anaerobic packed bed reactor", Water Res., 35(2), 425-432. https://doi.org/10.1016/S0043-1354(00)00280-3.   DOI
50 Tang, Y.., Liu, Q. and Chen, F. (2012), "Preparation and characterization of activated carbon from waste ramulus mori", Chem. Eng. J., 203, 19-24. https://doi.org/10.1016/j.cej.2012.07.007.   DOI
51 Varma, G.V. and Misra, A.K. (2016), "Equilibrium and kinetic studies on the adsorption of copper onto carica papaya leaf powder", Membr. Water Treat., 7(5), 403-416. https://doi.org/10.12989/mwt.2016.7.5.403.   DOI
52 Ghaee, A. and Zerafat, M.M. (2016), "Adsorption mechanism of copper ions on porous chitosan membranes: Equilibrium and XPS study", Membr. Water Treat., 7(6), 555-571. https://doi.org/10.12989/mwt.2016.7.6.555.   DOI
53 Tieleman, D.P., Marrink, S.J. and Berendsen, H.J. (1997), "A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems", Biochimica et Biophysica Acta (BBA)-Rev. Biomembr., 1331(3), 235-270. https://doi.org/10.1016/S0304-4157(97)00008-7.   DOI
54 Gur-Reznik, S., Katz, I. and Dosoretz, C.G. (2008), "Removal of dissolved organic matter by granular-activated carbon adsorption as a pretreatment to reverse osmosis of membrane bioreactor effluents", Water Res., 42(6), 1595-1605. https://doi.org/10.1016/j.watres.2007.10.004.   DOI
55 Hameed, B.H., Salman, J.M. and Ahmad, A.L. (2009), "Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones", J. Hazardous Mater., 163(1), 121-126. https://doi.org/10.1016/j.jhazmat.2008.06.069.   DOI
56 He, X.S., Xi, B.D., Zhang, Z.Y., Gao, R.T., Tan, W.B. and Cui, D.Y. (2014), "Insight into the evolution, redox and metal binding properties of dissolved organic matter from municipal solid wastes using two-dimensional correlation spectroscopy", Chemosphere, 117, 701-707. https://doi.org/10.1016/j.chemosphere.2014.09.060.   DOI
57 Hernandez, F., Sancho, J.V., Ibanez, M., Abad, E., Portoles, T. and Mattioli, L. (2012), "Current use of high-resolution mass spectrometry in the environmental sciences", Analytical Bioanalytical Chem., 403(5), 1251-1264. https://doi.org/10.1007/s00216-012-5844-7.   DOI
58 Hockaday, W.C., Grannas, A.M., Kim, S. and Hatcher, P.G. (2006), "Direct molecular evidence for the degradation and mobility of black carbon in soils from ultrahigh-resolution mass spectral analysis of dissolved organic matter from a fireimpacted forest soil", Organic Geochem., 37(4), 501-510. https://doi.org/10.1016/j.orggeochem.2005.11.003.   DOI
59 Twardowska, I., Schramm, K.W. and Berg, K. (2004), "III.4 -Sewage sludge" Waste Management Series, 4, 239-295. https://doi.org/10.1016/S0713-2743(04)80013-8.   DOI
60 Upadhyayula, V.K.K., Deng, S., Smith, G.B. and Mitchell, M.C. (2009), "Adsorption of Bacillus subtilis on single-walled carbon nanotube aggregates, activated carbon and $NanoCeram^{TM}$", Water Res., 43(1), 148-156. https://doi.org/10.1016/j.watres.2008.09.023.   DOI
61 Wang, J. and Gardinali, P.R. (2014), "Identification of phase II pharmaceutical metabolites in reclaimed water using high resolution benchtop Orbitrap mass spectrometry", Chemosphere, 107, 65-73. https://doi.org/10.1016/j.chemosphere.2014.03.021.   DOI
62 Wasay, S.A., Barrington, S. and Tokunaga, S. (1999), "Efficiency of GAC for treatment of leachate from soil washing process", Water, Air Soil Pollut., 116(3), 449-460. https://doi.org/10.1023/a:1005115820429.   DOI