• 제목/요약/키워드: Superparamagnetic iron oxide nanoparticles

검색결과 33건 처리시간 0.023초

Post Annealing Effects on Iron Oxide Nanoparticles Synthesized by Novel Hydrothermal Process

  • Kim, Ki-Chul;Kim, Young-Sung
    • Journal of Magnetics
    • /
    • 제15권4호
    • /
    • pp.179-184
    • /
    • 2010
  • We have investigated the effects of post annealing on iron oxide nanoparticles synthesized by the novel hydrothermal synthesis method with the $FeSO_4{\cdot}7H_2O$. To investigate the post annealing effect, the as-synthesized iron oxide nanoparticles were annealed at different temperatures in a vacuum chamber. The morphological, structural and magnetic properties of the iron oxide nanoparticles were investigated with high resolution X-ray powder diffraction (XRD), high resolution transmission electron microscopy (HRTEM), Mossbauer spectroscopy, and vibrating sample magnetometer analysis. According to the XRD and HRTEM analysis results, as-synthesized iron oxide nanoparticles were only magnetite ($Fe_3O_4$) phase with face-centered cubic structure but post annealed iron oxide nanoparticles at $700^{\circ}C$ were mainly magnetite phase with trivial maghemite ($\gamma-Fe_2O_3$) phase which was induced in the post annealing treatment. The crystallinity of the iron oxide nanoparticles is enhanced by the post annealing treatment. The particle size of the as-synthesized iron oxide nanoparticles was about 5 nm and the particle shape was almost spherical. But the particle size of the post annealed iron oxide nanoparticles at $700^{\circ}C$ was around 25 nm and the particle shape was spherical and irregular. The as-synthesized iron oxide nanoparticles showed superparamagnetic behavior, but post annealed iron oxide nanoparticles at $700^{\circ}C$ did not show superparamagnetic behavior due to the increase of particle size by post annealing treatment. The saturation of magnetization of the as-synthesized nanoparticles, post annealed nanoparticles at $500^{\circ}C$, and post annealed nanoparticles at $700^{\circ}C$ was found to be 3.7 emu/g, 6.1 emu/g, and 7.5 emu/g, respectively. The much smaller saturation magnetization value than one of bulk magnetite can be attributed to spin disorder and/or spin canting, spin pinning at the nanoparticle surface.

산화철 나노입자를 함유한 초상자성 마이크로니들에 관한 연구 (Study of Superparamagnetic Microneedles containing Iron Oxide Nanoparticles)

  • 이승준
    • 공업화학
    • /
    • 제32권5호
    • /
    • pp.556-561
    • /
    • 2021
  • 최근 산화철 나노입자는 외부의 자기장에 반응하는 자성의 특성과 생체적합성이 뛰어나 약물전달시스템(drug delivery system, DDS)에 관한 많은 연구의 소재로 사용되어져 왔다. 본 연구에서는 마이크로니들(microneedles, MNs)의 매트릭스 물질로 HA (hyaluronic acid)와 CMC (carboxy methyl cellulose)를 이용하여 SIONs (superparamagnetic iron oxide nanoparticles)이 함유된 HA-SMNs (hyaluronic acid-superparamagnetic microneedles)와 CMC-SMNs (carboxy methyl cellulose-superparamagnetic microneedles)를 제조하였으며, SEM (scanning electron microscopic), SQUD-VSM (superconducting quantum interference device-vibrating sample magnetometer), FMMD (frequency mixing magnetic detection), 고분자 및 바이오 멤브레인을 이용하여 SMNs의 다양한 특성을 조사하였다. SQUID-VSM 측정 결과 SIONs이 포함된 HA-SMNs와 CMC-SMNs에서 초상자성의 특성이 나타났으며, FMMD 측정에서는 SIONs 농도가 증가함에 따라 신호 강도에 변화가 확인되었다. 또한 SMNs의 바이오 막을 통한 HA-SMNs와 CMC-SMNs의 투과도 분석에서는 각각 평균 92.5%와 98.5%의 피부 투과율이 조사되었다. 이러한 결과를 통해 SMNs 제형은 경피약물전달시스템(transdermal drug delivery system, TDDS) 및 MR(magnetic mesonance) molecular imaging 분야의 전달소재로 활용될 수 있을 것으로 기대한다.

Electron Spin Resonance (ESR) and Microwave Absorption Studies of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for Hyperthermia Applications

  • Choi, Yong-Ho;Yi, Terry;Kim, Do-Kyung
    • 한국세라믹학회지
    • /
    • 제48권6호
    • /
    • pp.577-583
    • /
    • 2011
  • Stabilized biocompatible superparamagnetic iron oxide nanoparticles (SPIONs) were prepared by controlled coprecipitation method for hyperthermia application. ESR measurements determined that all of the interactions in the individual SPIONs (1 nm and 11 nm) were antiferromagnetic in nature because the ions contributed to the magnetization with a range of magnetic moments. In-situ monitoring of the temperature increment was performed, showing that the microwave absorption rate of the SPIONs was dispersed in an appropriate host media (polar or non-polar solvents) during microwave irradiation. Microwave absorption energy rates and heat loss of SPIONs in solvent were calculated by non-linear data fitting with an energy balance equation. The microwave absorption rates of SPIONs dispersed in solvent linearly increases when the concentration of SPIONs increases, implying that the microwave absorption rate can be tunable by changing the concentration of SPIONs.

Flame Synthesis of Silica-Coated Iron Oxide Nanoparticles and Their Characterization

  • Jun, Kimin;Yang, Sangsun;Lee, Jeonghoon;Pikhitsa, Peter V.;Choi, Mansoo
    • 한국입자에어로졸학회지
    • /
    • 제9권4호
    • /
    • pp.209-219
    • /
    • 2013
  • We have used the modified diffusion flame burner to synthesize silica coated iron oxide nanoparticles having enhanced superparamagnetic property. Silica-encapsulated iron oxide particles were directly observed using a high resolution transmission electron microscope. From the energy dispersive X-ray spectroscopy (EDS) and zeta potential measurements, the iron oxide particles were found to be completely covered by a silica coating layer. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) measurements revealed that the iron oxide core consists of ${\gamma}-Fe_2O_3$ rather than ${\alpha}-Fe_2O_3$. Our magnetization measurements support this conclusion. Biocompatibility test of the silica-coated iron oxide nanoparticles is also conducted using the protein adsorption onto the coated particle.

Development of Superparamagnetic Iron Oxide Nanoparticles (SPIOs)-Embedded Chitosan Microspheres for Magnetic Resonance (MR)-Traceable Embolotherapy

  • Kang, Myung-Joo;Oh, Il-Young;Choi, Byung-Chul;Kwak, Byung-Kook;Lee, Jae-Hwi;Choi, Young-Wook
    • Biomolecules & Therapeutics
    • /
    • 제17권1호
    • /
    • pp.98-103
    • /
    • 2009
  • Superparamagnetic iron oxide nanoparticles (SPIOs)-embedded chitosan microspheres were developed for magnetic resonance (MR)-traceable embolotherapy. SPIOs-loaded chitosan microspheres were prepared by emulsion and cross-linking technique and 100-200 ${\mu}m$ sized spherical microsparticles were obtained. Loading efficacy and loading amount of SPIOs in microspheres were about 40% and 0.26-0.32%, respectively, when measured by inductively coupled plasma atomic emission spectroscopy. Within 30 days, about 60% of the incorporated SPIOs were released from low cross-linked microspheres, whereas only about 40% of SPIOs was released from highly cross-linked microspheres. Highly cross-linked microspheres were more efficient for lower degree of swelling leading to secure entrapment of SPIOs in matrix. Prepared novel embolic microspheres are expected to be practically applicable for traceable embolotherapy with high resolution and sensitivity through magnetic resonance imaging (MRI).

산화철 나노입자의 크기에 따른 강자성 공명 신호의 선폭 특성 (Size Dependence of FMR Linewidth in Iron Oxide Nanoparticles)

  • 김동영;윤석수
    • 한국자기학회지
    • /
    • 제24권1호
    • /
    • pp.11-17
    • /
    • 2014
  • 본 연구에서는 열 분해법으로 크기가 각각 D=4.67 nm, 5.64 nm 및 6.34 nm인 균일한 산화철 나노입자를 제조하여 강자성 공명 신호를 측정하였다. 측정된 강자성 공명 신호는 입자의 부피가 로그 정규 확률 분포를 갖는 초상자성 나노입자에 대하여 계산한 결과와 비교 분석하였다. 강자성 공명 신호의 선폭은 나노입자의 크기가 증가함에 따라 넓어졌으며, tanh($V^2$)에 비례하는 특성을 보였다. 이러한 나노입자의 크기에 따른 선폭 증가는 나노입자들 표면에 분포하는 표면 스핀과 결정 이방성 특성을 갖는 내부 스핀들에 의한 두 가지 강자성 공명 신호의 중첩에 기인함을 알 수 있었다.

반응조건에 따른 실록산으로 코팅된 마그네타이트 나노입자의 크기 및 분포 (Effect of Reaction Conditions on the Size and Size Distribution of Magnetite Nanoparticles Coated with Siloxane)

  • 윤관한;한창민;장용민
    • 폴리머
    • /
    • 제28권2호
    • /
    • pp.170-176
    • /
    • 2004
  • 반응조건에 따른 실록산으로 코팅된 마그네타이트 나노입자의 크기 및 분포를 동적광산란을 이용하여 조사하였다. FT-IR로부터 마그네타이트의 표면에 히드록시기가 존재함을 확인하였고 이 히드록시기는 코팅된 실록산의 실란올과 수소결합을 이루고 있음이 확인되었다. 제조된 나노입자의 크기는 반응온도가 증가함에 따라 입자크기는 증가하였고 단량체 함량과 교반 속도의 증가에 따라서는 감소하였다. 입자 크기 분포는 반응조건에 따라서 약간의 변화는 있지만 전체적으로 14∼41nm 크기의 범위를 나타냈다. 제조된 마그네타이트의 자성특성은 vibrating sample magnetometer를 이용하여 초상자성임이 확인되었고 실록산으로 코팅된 나노입자 역시 초상자성을 나타냄을 확인하였다. 반응조건에 따라서는 반응온도가 증가할수록 포화자화강도는 증가하였고 단량체 함량과 교반 속도가 증가함에 따라서 포화자화강도가 감소하는 것을 나타내었다.

Structural Characterization and Dielectric Studies of Superparamagnetic Iron Oxide Nanoparticles

  • Sivakumar, D.;Naidu, K. Chandra Babu;Nazeer, K. Prem;Rafi, M. Mohamed;kumar, G. Ramesh;Sathyaseelan, B.;Killivalavan, G.;Begam, A. Ayisha
    • 한국세라믹학회지
    • /
    • 제55권3호
    • /
    • pp.230-238
    • /
    • 2018
  • Superparamagnetic iron oxide nanoparticles (SPIONs) have been prepared without using surfactants to assess their stability at different time intervals. The synthesized particles were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, ultraviolet-visible-near infrared spectroscopy, and energy dispersive spectroscopy. Field emission scanning electron microscopy and high-resolution transmission electron microscopy images of the samples were also investigated. The average particle size was measured to be 12.7 nm even in the polydispersed form. The magnetic and dielectric characteristics of the $Fe_3O_4$ nanoparticles have also been studied and discussed in detail.

Evaluation of thermally cross-linked superparamagnetic iron oxide nanoparticles for the changes of concentration and toxicity on tissues of Sprague-Dawley rats

  • Hue, Jin Joo;Lee, Hu-Jang;Jon, Sangyong;Nam, Sang Yoon;Yun, Young Won;Kim, Jong-Soo;Lee, Beom Jun
    • 대한수의학회지
    • /
    • 제54권4호
    • /
    • pp.245-252
    • /
    • 2014
  • This study was investigated the change of concentration and toxicity of thermally cross-linked superparamagnetic iron oxide nanoparticles (TCL-SPION) on tissues of Sprague-Dawley rats. TCL-SPION at the dose of 15 mg/kg body weight was intravenously injected into the tail vein of the male Sprague-Dawley rats. The fate of TCL-SPION in serum, urine and tissues was observed during 28 days. Serum iron level was maximal at 0.25 h post-injection and gradually declined thereafter. In addition, the sinusoids of liver and the red pulp area of spleen were mainly accumulated iron from 0.5 h to 28-day post-injection. In kidney, iron deposition was detected in the tubular area until 0.5 h after injection. Malondialdehyde concentration in the liver slightly increased with time and was not different with that at zero time. In the liver and spleen, TNF-${\alpha}$ and IL-6 levels of TS treated with TCL-SPION were not different with those of the control during the experimental period. From the results, TCL-SPION could stay fairly long-time in certain tissues after intravenous injection without toxicity. The results indicated that TCL-SPION might be useful and safe as a contrast for the diagnosis of cancer or a carrier of therapeutic reagents to treat diseases.

Crystallographic and Magnetic Properties of Iron Oxide Nanoparticles for Applications in Biomedicine

  • Lee, Sang-Won;Woo, Kyoung-Ja;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • 제9권3호
    • /
    • pp.83-85
    • /
    • 2004
  • Magnetic nanoparticles have been investigated for use as biomedical purposes for several years. For biomedical applications the use of particles that present superparamagnetic behavior at room temperature is preferred [1-4]. To control the magnetic materials by magnetic field is essential locate particle to the suitable destination on feeding by injection. In order to use them properly, the particles should be nano size. However there are many difficulties in applications, because there is lack of identifications in nano magnetic properties. In our studies, structural and magnetic properties of iron oxide nanoparticles were investigated by XRD, VSM, TEM, and Mossbauer spectroscopy. At 13 K, hyperfine fields of ${\gamma}-Fe_2O_3$ were 516 kOe and 490 kOe, that of $Fe_3O_4$ were 517 kOe and 482 kOe. The saturation magnetizations were 21.42 emu/g and 39.42 emu/g. The particle size of powders is 5~19 nm.