Browse > Article
http://dx.doi.org/10.11629/jpaar.2013.9.4.209

Flame Synthesis of Silica-Coated Iron Oxide Nanoparticles and Their Characterization  

Jun, Kimin (School of Mechanical and Aerospace Engineering, Seoul National University)
Yang, Sangsun (School of Mechanical and Aerospace Engineering, Seoul National University)
Lee, Jeonghoon (School of Mechanical Engineering, Korea University of Technology and Education)
Pikhitsa, Peter V. (Global Frontier Center for Multiscale Energy Systems, Seoul National University)
Choi, Mansoo (School of Mechanical and Aerospace Engineering, Seoul National University)
Publication Information
Particle and aerosol research / v.9, no.4, 2013 , pp. 209-219 More about this Journal
Abstract
We have used the modified diffusion flame burner to synthesize silica coated iron oxide nanoparticles having enhanced superparamagnetic property. Silica-encapsulated iron oxide particles were directly observed using a high resolution transmission electron microscope. From the energy dispersive X-ray spectroscopy (EDS) and zeta potential measurements, the iron oxide particles were found to be completely covered by a silica coating layer. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) measurements revealed that the iron oxide core consists of ${\gamma}-Fe_2O_3$ rather than ${\alpha}-Fe_2O_3$. Our magnetization measurements support this conclusion. Biocompatibility test of the silica-coated iron oxide nanoparticles is also conducted using the protein adsorption onto the coated particle.
Keywords
Nanoparticles; Coating; Iron oxide; Silica; Magnetism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sheen, S., Yang, S.,, Jun, K. and Choi, M. (2009). One step flame method for the synthesis of coated composite nanoparticles. J. Nanopart. Res. 11(7). 1767-1775.   DOI   ScienceOn
2 Suh, J., Han, B., Okuyama, K. and Choi, M. (2005). Highly charging of nanoparticle through electrospray of nanoparticle suspension. J. Colloid Interface Sci., 287. 135-140.   DOI   ScienceOn
3 Yang, H., Zhang, S., Chen, X., Zhuang, Z., Xu, J. and Wang, X. (2004). Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal. Chem., 76. 1316-1321.   DOI   ScienceOn
4 Yang, S., Yi, J. H., Son, S., Jang, J., Altman, I. S., Pikhitsa, P. V. and Choi, M. (2003). Fragmentation of $Fe_{2}O_{3}$nanoparticles driven by a phase transition in a flame and their magnetic properties. Appl. Phys. Letters. 83. 4842-4844.   DOI   ScienceOn
5 Yu, J. H., Lee, C. W., Im, S. S. and Lee, J. S. (2003). Structure and magnetic properties of SiO2 coated $Fe_{2}O_{3}$ nanoparticles synthesized by chemical vapor condensation process. Rev. Adv. Mater. Sci., 4. 55-59.   DOI   ScienceOn
6 Zachariah, M., Aquino, M. I., Shull, R. D. and Steel, E. B. (1995) Formation of superparamagnetic nanocomposites from vapor phase condensation in a flame. NanoStructured Mater. 5, 383-392.   DOI   ScienceOn
7 Zubov, E., Byszewsky, P., Chabanenko, V., Kowalska, E., Gladczuk, L. and Kochkanjan, R. (2000). Superparamagnetic behavior of $C_{60}Fe$. J. Magnet. Magnet. Mater. 222. 89-96   DOI   ScienceOn
8 Fiorani, D., Testa, A. M., Lucari, F., D'Orazio, F. and Romero, H. (2002) Magnetic properties of maghemite nanoparticle systems: surface anisotropy and interparticle interaction effects. Physica B. 320. 122-126.   DOI   ScienceOn
9 Fiorani, D., Testa, A. M., Tronc, E., Lucari, F., D'Orazio, F., and Nogues, M. (2001). Spin freezing in maghemite nanoparticle systems. J. Magn. Magn. Mater., 226, 1942-1944.
10 Gupta, A. K. and Gupta, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical application. Biomaterials, 26. 3995-4021.   DOI   ScienceOn
11 Iijima, M., Yonemochi, Y., Kimata, M., Hasegawa, M., Tsukada, M. and Kamiya, H. (2005). Preparation of agglomeration-free hematite particles coated with silica and their reduction behavior in hydrogen. J. Colloid and Interface Sci., 287. 526-533.   DOI   ScienceOn
12 Janzen, C., Knipping, J., Rellinghaus, B. and Roth. P. (2003)Formation of silica-embedded iron-oxide nanoparticles in low-pressure flames. J. Nanoparticle Res., 5. 589-596.   DOI   ScienceOn
13 Kim, H., Kim, J., Yang, H. Suh, J., Kim, T., Han, B., Kim, D. S., Kim, S., Pikhitsa, P. V. and Choi, M. (2006). Parallel patterning of nanoparticles via electrodynamic focusing of charged aerosols. Nature Nanotechnology, 1. 117-121.   DOI   ScienceOn
14 Kim, T., Reis, L., Rajan, K., and Shima, M. (2005). Magnetic behavior of iron oxide nanoparticle- biomolecule assembly. J. Magn. Magn. Mater., 295. 132-138.   DOI   ScienceOn
15 Lee, H., You, S., Woo, C., Lim, K., Jun, K. and Choi, M. (2009) Focused patterning of nanoparticles by controlling electric field induced particle motion. Appl.Phys. Lett. 94. 053104.   DOI   ScienceOn
16 Bacri, J. C., Perzynski, R., Cabuil, D. S. V. and Massart, R. (1990). Ionic ferrofluids: A crossing of chemistry and physics. J. Magn. Magn. Mater., 85, 27-32.   DOI   ScienceOn
17 McIntyre, N. S., and Zetaruk, D. G. (1977). X-ray photoelectron spectroscopic studies of iron oxides. Anal. Chem. 49.1521-1529.   DOI
18 Bitoh, T, Ohba, K., Takamatsu, M., Shirane, T. and Chikazawa, S. (1996) Comparative study of linear and nonlinear susceptibilities of fine-particle and spin-glass systems: quantitative analysis based on the superparamagnetic blocking model. J. Magnet. Magnet. Mater. 154. 59-65.   DOI   ScienceOn
19 Leslie-Pelecky, D. L. and Rieke, R. D. (1996). Magnetic properties of nanostructured materials. Chem. Mater. 8. 1770-1783.   DOI   ScienceOn
20 Ma, D., Guan, J., Normandin, F., Denommee, S., Enright, G., Veres, T. and Simard. B. (2006). Multifunctional nano-architecture for biomedical applications. Chem. Mater., 18. 920-1927.
21 Pikhitsa, P. V., Choi, M., Yang, S., Kim, J-Y., Jang, H. and Park, J-H. (2007). Fast fragmentation of metal oxide nanoparticles via reduction in oxy hydrogen flame. Appl. Phys. Lett. 90. 163106.   DOI
22 Santra, S., Tapec, R., Theodoropoulou, N., Dobson, J., Hebard, A. and Tan, W. (2001). Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: The effect of nonionic surfactants. Langmuir, 17. 2900-2906.   DOI   ScienceOn