DOI QR코드

DOI QR Code

Post Annealing Effects on Iron Oxide Nanoparticles Synthesized by Novel Hydrothermal Process

  • Kim, Ki-Chul (Department of Material Design Engineering, Mokwon University) ;
  • Kim, Young-Sung (Graduate School of NID Fusion Technology, Seoul National University of Science and Technology)
  • Received : 2010.10.01
  • Accepted : 2010.11.23
  • Published : 2010.12.31

Abstract

We have investigated the effects of post annealing on iron oxide nanoparticles synthesized by the novel hydrothermal synthesis method with the $FeSO_4{\cdot}7H_2O$. To investigate the post annealing effect, the as-synthesized iron oxide nanoparticles were annealed at different temperatures in a vacuum chamber. The morphological, structural and magnetic properties of the iron oxide nanoparticles were investigated with high resolution X-ray powder diffraction (XRD), high resolution transmission electron microscopy (HRTEM), Mossbauer spectroscopy, and vibrating sample magnetometer analysis. According to the XRD and HRTEM analysis results, as-synthesized iron oxide nanoparticles were only magnetite ($Fe_3O_4$) phase with face-centered cubic structure but post annealed iron oxide nanoparticles at $700^{\circ}C$ were mainly magnetite phase with trivial maghemite ($\gamma-Fe_2O_3$) phase which was induced in the post annealing treatment. The crystallinity of the iron oxide nanoparticles is enhanced by the post annealing treatment. The particle size of the as-synthesized iron oxide nanoparticles was about 5 nm and the particle shape was almost spherical. But the particle size of the post annealed iron oxide nanoparticles at $700^{\circ}C$ was around 25 nm and the particle shape was spherical and irregular. The as-synthesized iron oxide nanoparticles showed superparamagnetic behavior, but post annealed iron oxide nanoparticles at $700^{\circ}C$ did not show superparamagnetic behavior due to the increase of particle size by post annealing treatment. The saturation of magnetization of the as-synthesized nanoparticles, post annealed nanoparticles at $500^{\circ}C$, and post annealed nanoparticles at $700^{\circ}C$ was found to be 3.7 emu/g, 6.1 emu/g, and 7.5 emu/g, respectively. The much smaller saturation magnetization value than one of bulk magnetite can be attributed to spin disorder and/or spin canting, spin pinning at the nanoparticle surface.

Keywords

References

  1. Yu Lu, Yadong Yin, Brian T. Mayers, and Younan Xia, Nano Lett. 2, 183 (2002). https://doi.org/10.1021/nl015681q
  2. D. K. Kim, Y. Zhang, J. Kehr, T. Klason, B. Bjelke, and M. Muhammed, J. Magn. Magn. Mater. 225, 256 (2001). https://doi.org/10.1016/S0304-8853(00)01255-5
  3. Young-wook Jun, Yong-Min Huh, Jin-sil Choi, Jae-Hyun Lee, Ho-Tak Song, Sungjun Kim, Sarah Yoon, Kyung- Sup Kim Jeon-Soo Shin, Jin-Suck Suh, and Jinwoo Cheon, J. Am. Chem. Soc. 127, 5732 (2005). https://doi.org/10.1021/ja0422155
  4. A. Jordan, R. Scholz, P. Wust, H. Fahling, and R. Felix, J. Magn. Magn. Mater. 201, 413 (1999). https://doi.org/10.1016/S0304-8853(99)00088-8
  5. J. Steingroewer, T. Bley, C. Bergemann, and E. Boschke, J. Magn. Magn. Mater. 311, 295 (2007). https://doi.org/10.1016/j.jmmm.2006.10.1192
  6. Z. M. Saiyed, C. Bochiwal, H. Gorasia, S. D. Telang, and C. N. Ramchand, Analytical Biochemistry 356, 306 (2006). https://doi.org/10.1016/j.ab.2006.06.027
  7. Se Chan Kang, Yong Jun Jo, Jong Phil Bak, Ki-Chul Kim, and Young-Sung Kim, J. Nanosci. Nanotechnol. 7, 3706 (2007). https://doi.org/10.1166/jnn.2007.022
  8. Y. Chu, J. Hu, W. Yang, C. Wang, and Jin Z. Zhang, J. Phys. Chem. B 110, 3135 (2006). https://doi.org/10.1021/jp056506r
  9. Fong-Yu Cheng, Chia-Hao Su, Yu-Sheng Yang, Chen-Sheng Yeh, Chiau-Yuang Tsai, Chao-Kiang Wu, Ming-Ting Wu, and Dar-Bin Shieh, Biomaterials 26, 729 (2005). https://doi.org/10.1016/j.biomaterials.2004.03.016
  10. Taeghwan Hyeon, Su Seong Lee, Jongnam Park, Yunhee Chung, and Hyon Bin Na, J. Am. Chem. Soc. 123, 12798 (2001). https://doi.org/10.1021/ja016812s
  11. Shouheng Sun and Hao Zeng, J. Am. Chem. Soc. 124, 8204 (2002). https://doi.org/10.1021/ja026501x
  12. G. Sanon, R. Rup, and A. Mansingh, Thin Solid Films 190, 287 (1990). https://doi.org/10.1016/0040-6090(89)90918-8
  13. J. M. Vargas, E. Lima, Jr., L. M. Socolovsky, M. Knobel, D. Zanchet, and R. D. Zysler, J. Nanosci. Nanotechnol. 7, 3313 (2007). https://doi.org/10.1166/jnn.2007.688
  14. Gerado F. Goya, Solid State Commun. 130, 783 (2004). https://doi.org/10.1016/j.ssc.2004.04.012
  15. G. F. Goya, T. S. Berquo, F. C. Fonseca, and M. P. Morales, J. Appl. Phys. 94, 3520 (2003). https://doi.org/10.1063/1.1599959
  16. S. Chikazumi, Physics of Magnetism, Wiley, New York (1964) p. 100.
  17. R. H. Kodama, A. E. Berkowitz, E. J. McNiff, and S. Foner, Phys. Rev. Lett. 77, 394 (1996). https://doi.org/10.1103/PhysRevLett.77.394
  18. B. Martinez, X. Obradors, L. Balcells, A. Rouanet, and C. Monty, Phys. Rev. Lett. 80, 181 (1998). https://doi.org/10.1103/PhysRevLett.80.181
  19. T. Lutz, C. Estouvnes, and J. L. Guille, J. Sol-Gel Sci. Technol. 13, 929 (1998). https://doi.org/10.1023/A:1008683509417
  20. H. Kachkachi and M. Dimian, Phys. Rev. B 66, 174419 (2002). https://doi.org/10.1103/PhysRevB.66.174419
  21. E. Lima, Jr., A. L. Brandl, A. D. Arelaro, and G. F. Goya, J. Appl. Phys. 99, 083908 (2006). https://doi.org/10.1063/1.2191471

Cited by

  1. Facile sonochemical synthesis of high-moment magnetite (Fe3O4) nanocube vol.15, pp.1, 2013, https://doi.org/10.1007/s11051-012-1354-y