Browse > Article
http://dx.doi.org/10.4283/JKMS.2014.24.1.011

Size Dependence of FMR Linewidth in Iron Oxide Nanoparticles  

Kim, Dong Young (Department of Physics, Andong National University)
Yoon, Seok Soo (Department of Physics, Andong National University)
Abstract
We measured the ferromagnetic resonance (FMR) signal using the monodisperse iron oxide nanoparticles with size D=4.67 nm, 5.64 nm and 6.34 nm synthesized by using the thermal decomposition method, respectively. The measured ferromagnetic resonance signals were compared with the calculated ones for superparamagnetic nanoparticles with lognormal volume distribution. The FMR linewidth broadening was propositional to tanh($V^2$), where V was volume of nanoparticles. The narrow linewidth of small size nanoparticles was due to the surface spins, while the broad linewidth of large size nanoparticles was due to the bulk spins affected by the crystalline structure of iron oxide nanoparticles. The superposition of surface and bulk effect was confirmed at D=5.64 nm nanoparticles, which was near the critical size for linewidth transition from surface effect to bulk effect.
Keywords
iron oxide; superparamagnetic nanoparticles; thermal fluctuation; FMR signal; linewidth;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H. T. Hai, H. Kura, M. Takahashi, and T. Ogawa, J. Phys: Condens. Mater. 266, 012127 (2011).
2 J. M. Vargas, E. Lima Jr., R. D. Zysler, J. G. S. Duque, E. Be. Biasi, and M. Knobel, Eur. Phys. J. B 64, 211 (2008).   DOI
3 J. Kliava and R. Berger, J. Magn. Magn. Mater. 205, 328 (1999).   DOI
4 E. De Baiasi, C. A. Ramos, and R. D. Zysler, J. Magn. Magn. Mater. 262, 235 (2003).   DOI
5 D. Y. Kim, New Physics: Sae Mulli 63, 189 (2013).   DOI
6 R. D. Sanchez, M. A. L. Quintela, J. Rivas, A. G. Penedo, A. J. G. Bastida, C. A. Romos, R. D. Zysler, and S. R. Guevara, J. Phys: Condens. Mater. 11, 5643 (1999).   DOI
7 P. C. Morais, F. A. Tourinho, G. R. R. Goncalves, and A. L. Tronconi, J. Magn. Magn. Mater. 149, 19 (1995).   DOI
8 L. F. Gamarra, W. M. Pontuschka, J. B. Mamani, D. R. Cornejo, T. R. Oliveira, E. D. Vieira, A. J. Costa-Filho, and E. Amaro Jr., J. Phys: Condens. Mater. 21, 115104 (2009).   DOI
9 S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst, and R. N. Muller, Chem. Rev. 108, 2064 (2008).   DOI   ScienceOn
10 J. Park, K. An, Y. Hwang, J. G. Park, H. J. Noh, J. Y. Kim, J. H. Park, N. M. Hwang, and T. Hyeon, Nature Materials 3, 891 (2004).   DOI   ScienceOn
11 Y. A. Koksharov. D. A. Pankratov, S. P. Gubin, I. D. Kosobudsky, M. Beltran, Y. Khodorkovsky, and A. M. Tishin, J. Appl. Phys. 89, 2293 (2001).   DOI