• Title/Summary/Keyword: Superconducting Flux flow Transistor

Search Result 12, Processing Time 0.023 seconds

Operational Characteristics of Superconducting Amplifier using Vortex Flux Flow

  • Lim, Sung-Hun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.260-264
    • /
    • 2008
  • The operational characteristics of superconducting amplifier using vortex flux flow were analyzed from an equivalent circuit in which its current-voltage characteristics for the vortex motion in YBCO microbridge were reflected. For the analysis of operation as an amplifier, dc bias operational point for the superconducting amplifier is determined and then ac operational characteristics for the designed superconducting amplifier were investigated. The variation of transresistance, which describes the operational characteristics of superconducting amplifier, was estimated with respect to conditions of dc bias. The current and the voltage gains, which can be derived from the circuit for small signal analysis, were calculated at each operational point and compared with the results obtained from the numerical analysis for the small signal circuit. From our paper, the characteristics of amplification for superconducting flux flow transistor (SFFT) could be confirmed. The development of the superconducting amplifier applicable to various devices is expected.

Fabrication of the weak link with the the Transistor Characteristics in 77 K (77K에서 트랜지스터 특성을 나타내는 링크의 제작)

  • 강형곤;임성훈;고석철;주철원;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.921-926
    • /
    • 2001
  • The link for the Superconducting Flux Flow Transistor (SFFT) which is based on the flux flow has been fabricated by the ICP etching methods. The channel width and the thickness of the SFFT were a 3 ${\mu}$m and about 300 nm, respectively. The superconducting characteristic of the link was measured by the x-ray diffraction and the E.D.S.. The SFFT etched by ICP showed an I-V characteristic like the three terminal transistor.

  • PDF

Fabrication of Superconducting Flux Flow Transistor using Plasma etching (플라즈마 식각을 이용한 초전도 자속 흐름 트랜지스터 제작)

  • 강형곤;임성훈;고석철;한윤봉;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.74-77
    • /
    • 2002
  • The channel of the superconducting Flux Flow Transistor has been fabricated with plasma etching method using ICP. The ICP conditions were 700 W of ICP power, 150 W of rf chuck power, 5 mTorr of the pressure in chamber and 1:1 of Ar : Cl$_2$, respectively. The channel etched by plasma gas showed superconducting characteristics of over 77 K and superior surface morphology. The critical current of SFFT was altered by varying the external applied current. As the external applied current increased from 0 to 12 mA, the critical current decreased from 28 to 22 mA. Then the obtained r$\sub$m/ values were smaller than 0.1Ω at a bias current of 40 mA. The current gain was about 0.5. Output resistance was below 0.2 Ω.

  • PDF

Superconducting Flux flow Transistor using Plasma Etching (플라즈마 식각을 이용한 초전도 자속 흐름 트랜지스터)

  • 강형곤;고석철;최명호;한윤봉;한병성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.5
    • /
    • pp.424-428
    • /
    • 2003
  • The channel of a superconducting flux flow transistor has been fabricated with plasma etching method using a inductively coupled plasma etching. The ICP conditions then were ICP Power of 450 W, rf chuck power of 150 W, the pressure in chamber of 5 mTorr, and Ar : Cl$_2$=1:1. Especially, over the 5 mTorr, the superconducting thin films were not etched. The channel etched by plasma gas showed the critical temperature over 85 K. The critical current of the SFFT was altered by varying the external applied current. As the external applied current increased from 0 to 12 mA, the critical current decreased from 28 to 22 mA. Then the obtained trans-resistance value was smaller than 0.1 $\Omega$ at a bias current of 40 mA.

A Comparative Analysis of I-V Characteristics in a single Channel Superconducting Flux Flow Transistor (단일채널 고온초전도 자속흐름 트랜지스터의 I-V 특성 비교분석)

  • Ko, Seok-Cheol;Kang, Hyeong-Gon;Lim, Sung-Hun;Choi, Myong-Ho;Lee, Jong-Hwa;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.107-110
    • /
    • 2003
  • We have proposed a model to describe the current-voltage characteristics of fabricated devices using the Biot-Savart's law in order to develop superconducting flux flow transistors, The measured and calculated values, including induced voltage, transresistance and current gain were investigated in relation to the parallel flow of the vortices in a single microbridge. The predictions agreed very well with measured results.

  • PDF

Characteristics of Plasma etching and Fabrication of Superconducting Flux Flow Transistor (플라즈마 식각 특성과 이를 이용한 초전도 자속 흐름 트랜지스터)

  • Kang, H.G.;Park, C.B.;Lee, K.S.;Kim, H.G.;Hwang, C.S.;Han, B.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.138-141
    • /
    • 2002
  • The channel of the superconducting Flux Flow Transistor has been fabricated with plasma etching method using ICP. The ICP conditions were 700 W of ICP power, 150 W of rf chuck power, 5 mTorr of the pressure in chamber and 1:1 of Ar : $Cl_2$, respectively. The channel etched by plasma gas showed superconducting characteristics of over 77 K and superior surface morphology. The critical current of SFFT was altered by varying the external applied current. As the external applied current increased from 0 to 12 mA, the critical current decreased from 28 to 22 mA. Then the obtained $r_m$ values were smaller than $0.1\Omega$ at a bias current of 40 mA. The current gain was about 0.5. Output resistance was below $0.2\Omega$.

  • PDF

Fabrication and Characterization of $High-T_c$ Superconducting Single Channel Flux Flow Transistor using the Atomic Force Microscope TiO Cantilever Tip (원자힘 주사현미경 TiO 탐침을 이용한 고온 초전도 단일채널 자속 흐름 트랜지스터의 제작 및 특성 해석)

  • Ko, Seok-Cheol;Kang, Hyeong-Gon;Lim, Sung-Hun;Lee, Jong-Hwa;Lee, Hae-Sung;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.101-104
    • /
    • 2004
  • We have fabricated a channel of superconducting flux flow transistor(SFFT) using the voltage-biased atomic force microscope(AFM) TiO tip and performed numerical simulations for the SFFT controlled by the magnetic field with a control current. The critical current density in a channel of the fabricated SFFT was decreased with the applied current by a control line. By comparing the measured with theoretical results, we showed a possibility of fabrication of an SFFT with a nano-channel using AFM anodization process technique.

  • PDF

Vortex Dynamics of Superconducting Flux Flow Transistor in a Channel (채널부분의 초전도 자속 흐름 트랜지스터 볼텍스 동력학)

  • Ko, Seok-Cheol;Kang, Hyeong-Gon;Lim, Sung-Hun;Lee, Jong-Hwa;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.546-549
    • /
    • 2003
  • The principle of the superconducting vortex flow transistor (SVFT) is based on control of the Abrikosov vortex flowing along a channel. The induced voltage is controlled by a bias current and a control current, instead of external magnetic field. The device is composed of parallel weak links with a nearby current control line. We explained the process to get an I-V characteristic equation and described the method to induce the external and internal magnetic field by the Biot-Savarts law in this paper. The equation can be used to predict the I-V curves for fabricated device. From the equation we demonstrated that the current-voltage characteristics were changed with input parameters. I-V characteristics were simulated to analyze a SVFT with multi-channel by a Matlab program.

  • PDF

Fabrication of the Superconducting Flux Flow Transistor Using the ICP Etching Method (ICP 장치를 이용한 초전도 자속 흐름 트랜지스터의 링크 제작)

  • Gang, Hyeong-Gon;Im, Yeon-Ho;Im, Seong-Hun;Choe, Hyo-Sang;Han, Yun-Bong;Han, Byeong-Seong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.10
    • /
    • pp.494-499
    • /
    • 2001
  • The effects of accelerated Ultraviolet (UV) radiation on High temperature vulcanized (HTV), Room temperature vulcanized (RTV) silicone rubber and two types of ethylene propylene diene terpolymer (EPDM) used for composite insulator were investigated by hydrophobicity class (HC), surface voltage decay after corona charging, SEM-ES, FTIR and XPS. The contact angle in two kinds of silicone rubber was scarcely change, but EPDM occurred to the loss of hydrophobicity followed by surface cracking and chalking. The surface voltage decay on UV-treated silicone rubber and EPDM showed a different decay trend with UV treatment. EDS and XPS analysis indicated that the oxygen content increased with UV treatment time in all samples. For silicone rubber, the oxidized groups of inorganic silica-like structure increased with UV treatment time. The oxidized carbon of C=O, O=C-O in EPDM increased. These oxidized surface for each material had different electrostatic characteristics, so deposited charges were expected to have different impacts on their surface hydrophobicity. The degradation mechanism based on our results was discussed.

  • PDF

Analysis of the Critical Characteristics in the Superconducting Strip Lines by ICP Etching System (ICP 식각 시스템에 의한 초전도 스트립 라인의 임계 특성 분석)

  • 고석철;강형곤;최효상;양성채;한병성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.782-787
    • /
    • 2004
  • Superconducting flux flow transistor (SFFT) is based on a control of the Abrikosov vortex flowing along a channel. The induced voltage by moving of the Abrikosov vortex in an SFFT is greatly affected by the thickness, the width, and the length of channel. In order to fabricate a reproducible channel in the SFFT, we studied the variation of the critical characteristics of ${YBa}_2{Cu}_3{O}_7-\delta(YBCO)$ thin films with the etching time using ICP (Inductively coupled plasma) system. From the simulation, it was certified that the vortex velocity was increased in a low pinning energy at channel width 0,5 mm. The surfaces of YBCO thin film were etched by ICP etching system. We observed the etched channel surfaces by AFM (Atomic Force Microscope) and measured the critical current density with etching time. As a measured results, the etching thickness of channel should be optimized to fabricated a flux flow transistor with specified characteristics.