• Title/Summary/Keyword: Sum of divisor functions

Search Result 25, Processing Time 0.021 seconds

A STUDY OF SUM OF DIVISOR FUNCTIONS AND STIRLING NUMBER OF THE FIRST KIND DERIVED FROM LIOUVILLE FUNCTIONS

  • KIM, DAEYEOUL;KIM, SO EUN;SO, JI SUK
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.5_6
    • /
    • pp.435-446
    • /
    • 2018
  • Using the theory of combinatoric convolution sums, we establish some arithmetic identities involving Liouville functions and restricted divisor functions. We also prove some relations involving restricted divisor functions and Stirling numbers of the first kind for divisor functions.

ON FOUR NEW MOCK THETA FUNCTIONS

  • Hu, QiuXia
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.345-354
    • /
    • 2020
  • In this paper, we first give some representations for four new mock theta functions defined by Andrews [1] and Bringmann, Hikami and Lovejoy [5] using divisor sums. Then, some transformation and summation formulae for these functions and corresponding bilateral series are derived as special cases of 2𝜓2 series $${\sum\limits_{n=-{{\infty}}}^{{\infty}}}{\frac{(a,c;q)_n}{(b,d;q)_n}}z^n$$ and Ramanujan's sum $${\sum\limits_{n=-{{\infty}}}^{{\infty}}}{\frac{(a;q)_n}{(b;q)_n}}z^n$$.

A STUDY OF COFFICIENTS DERIVED FROM ETA FUNCTIONS

  • SO, JI SUK;HWANG, JIHYUN;KIM, DAEYEOUL
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.3_4
    • /
    • pp.359-380
    • /
    • 2021
  • The main purpose and motivation of this work is to investigate and provide some new results for coefficients derived from eta quotients related to 3. The result of this paper involve some restricted divisor numbers and their convolution sums. Also, our results give relation between the coefficients derived from infinite product, infinite sum and the convolution sum of restricted divisor functions.

TRIPLE AND FIFTH PRODUCT OF DIVISOR FUNCTIONS AND TREE MODEL

  • KIM, DAEYEOUL;CHEONG, CHEOLJO;PARK, HWASIN
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.1_2
    • /
    • pp.145-156
    • /
    • 2016
  • It is known that certain convolution sums can be expressed as a combination of divisor functions and Bernoulli formula. In this article, we consider relationship between fifth-order combinatoric convolution sums of divisor functions and Bernoulli polynomials. As applications of these identities, we give a concrete interpretation in terms of the procedural modeling method.

ARITHMETIC SUMS SUBJECT TO LINEAR AND CONGRUENT CONDITIONS AND SOME APPLICATIONS

  • Kim, Aeran;Kim, Daeyeoul;Sankaranarayanan, Ayyadurai
    • Honam Mathematical Journal
    • /
    • v.36 no.2
    • /
    • pp.305-338
    • /
    • 2014
  • We investigate the explicit evaluation for the sum $\sum_{(a,b,x,y){\in}\mathbb{N}^4,\\{ax+by=n},\\{C(x,y)}$ ab in terms of various divisor functions (where C(x, y) is the set of residue conditions on x and y) for various fixed C(x, y). We also obtain some identities and congruences as interesting applications.

DIVISOR FUNCTIONS AND WEIERSTRASS FUNCTIONS ARISING FROM q-SERIES

  • Kim, Dae-Yeoul;Kim, Min-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.693-704
    • /
    • 2012
  • We consider Weierstrass functions and divisor functions arising from $q$-series. Using these we can obtain new identities for divisor functions. Farkas [3] provided a relation between the sums of divisors satisfying congruence conditions and the sums of numbers of divisors satisfying congruence conditions. In the proof he took logarithmic derivative to theta functions and used the heat equation. In this note, however, we obtain a similar result by differentiating further. For any $n{\geq}1$, we have $$k{\cdot}{\tau}_{2;k,l}(n)=2n{\cdot}E_{\frac{k-l}{2}}(n;k)+l{\cdot}{\tau}_{1;k,l}(n)+2k{\cdot}{\sum_{j=1}^{n-1}}E_{\frac{k-1}{2}(j;k){\tau}_{1;k,l}(n-j)$$. Finally, we shall give a table for $E_1(N;3)$, ${\sigma}(N)$, ${\tau}_{1;3,1}(N)$ and ${\tau}_{2;3,1}(N)$ ($1{\leq}N{\leq}50$) and state simulation results for them.

CHANGING RELATIONSHIP BETWEEN SETS USING CONVOLUTION SUMS OF RESTRICTED DIVISOR FUNCTIONS

  • ISMAIL NACI CANGUL;DAEYEOUL KIM
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.3
    • /
    • pp.553-567
    • /
    • 2023
  • There are real life situations in our lives where the things are changing continuously or from time to time. It is a very important problem for one whether to continue the existing relationship or to form a new one after some occasions. That is, people, companies, cities, countries, etc. may change their opinion or position rapidly. In this work, we think of the problem of changing relationships from a mathematical point of view and think of an answer. In some sense, we comment these changes as power changes. Our number theoretical model will be based on this idea. Using the convolution sum of the restricted divisor function E, we obtain the answer to this problem.