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DIVISOR FUNCTIONS AND WEIERSTRASS FUNCTIONS
ARISING FROM ¢g-SERIES

DAEYEOUL KiM AND MIN-S00 KiMm

ABSTRACT. We consider Weierstrass functions and divisor functions aris-
ing from g-series. Using these we can obtain new identities for divisor
functions. Farkas [3] provided a relation between the sums of divisors
satisfying congruence conditions and the sums of numbers of divisors sat-
isfying congruence conditions. In the proof he took logarithmic derivative
to theta functions and used the heat equation. In this note, however, we
obtain a similar result by differentiating further. For any n > 1, we have
n—1
k-mop1(n) = 2"'E% (n; k) 17155, (n) 42k Z E% (G5 )Tk, (n—4).
j=1
Finally, we shall give a table for E1(N;3),0(N),71;3,1(N) and 72,31 (N)
(1 < N <50) and state simulation results for them.

1. Introduction

Basic hypergeometric series plays a very important role in many fields, such
as affine systems, Lie algebras and groups, number theory, orthogonal polyno-
mials, and physics. Throughout this paper, we use the standard notation

(a:q)oe = [ (1 - ag").
n>0
If there is no confusion, we briefly write (a) instead of (a;¢)so. In general, ¢
will denote a fixed complex number of absolute value less than 1, so we may
write ¢ = €™ with Im 7 > 0.
For N,m,r,s,w,k,l € Z, we define some divisor functions necessary for later
use, which appear in many areas of number theory:

E(Nsm)= > 1-— > 1,
d|N d|N
d=r mod m d=—r mod m

Er,.,_,s(N;m) =E.(N;m)+ -+ E,(N;m),
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ol (Nsm)= > d, o(N)=) d,
d|N d|N
d=s mod m
os(N;m) = Jil}(N;m) = Z d,
AN
d=s mod m
nea(N)= Y. N+ ) N/,

d|N d|N

d=t5t mod k d=*H mod k
T (N) = Y (N/dP— Y (N/d)
d|N d|N
d=*2! mod k d=%F mod k

In [1, 2], Cho et al. considered various identities for g-series whose coefficients
were given by divisor functions.

In §2 we will give formulas of divisor functions for the Weierstrass o(N)
function with N = %, 7 and %Jrl

In §3 we shall give a theorem for divisor functions that is similar to Farkas
results. Farkas [3] provided a relation between the sums of divisors satisfying
congruence conditions and the sums of numbers of divisors satisfying congru-
ence conditions. In the proof he took logarithmic derivative to theta functions
and used the heat equation. In this section, however, we obtain a similar result

by differentiating further. For any n > 1, we have

n—1

k-Topi(n)=2n- Ei (nyk) +1-m60(n) + 2k - ZE% (Fi k)T (n — 7).

j=1

Finally, we shall give a table for E1(N;3),0(N), m1.3,1(N) and 72,3 1 (V) (1 <
N < 50) and state simulation results for them.

2. Divisor functions for Weierstrass g function

N. J. Fine’s list of identities of the basic hypergeometric series type appeared
in [5]. In this section, we shall state two identities in [5, p. 78, p. 79]:

n BR3P ()Y) Y w
(@)% (g% q*)8, o) wIN ’
w odd

(g% )3,
2) R oo — N7 5(N)gY,
(% a*)% N%d !

Throughout this section, we shall fix the following notations: K = Q(v/D)
with D < 0 is an imaginary quadratic field, $ the complex upper half plane and
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TeEKNH. Let A, =Z+7Z (7 € H) be a lattice and z € C. The Weierstrass
p function relative to A, is defined by the series

1 1 1
A = — P ——
(2 Ar) 2t Z {(z—w)2 wz}
wEA,
w#0
and the Eisenstein series of weight 2k for A, with k£ > 1 is the series
sz(AT) = Z w2k,

wEA
w#0

We shall use the notations p(z) and Gay, instead of p(z; A;) and Gar(A;),
respectively, when the lattice A, is fixed. Then the Laurent series for p(z)
about z = 0 is given by

oo

p(z) = 2_2 + Z(?k‘ + 1)G2k+222k.
k=1

As is customary, by setting
92(7) = g2(A;) =60G4 and g3(7) = g3(A;) = 140G,
the algebraic relation between p(z) and ¢’(z) becomes
9'(2)" = 4p(2)° — g2(7)p(2) — g3 (7).

For our purposes, we need the following propositions for the Weierstrass
functions.

Proposition 2.1 ([9, 10]). Let 7 € K N $. Then

(a) (%) - ;) = (% ¢*)% (—4:¢*)% -

&
(b) ¢ (T ; 1) 2 <;) = —1(¢%¢*) % (6 4*)%-
(c) o (T ; )y (g) =167°(¢% ¢*)5 (—a% ¢*)%-
Proposition 2.2 ([6, 7, 8]). Let 7 € K N$. Then

T ’/T2

(a) p <§> = — 5 (6% 6% (=4 ¢")5% + 160(a% ¢*)e (=4 4*)%)-
(b) (T ;r 1) = —%((q2;q2)§o(—q;q2)§o —329(¢* ¢*)a (0% %)

’/T2
© 0 (5) = 25 (S0 ~ Sala L% %)

Using (1), (2) and Proposition 2.2 we obtain the identity for p:

3 (T (2% )% a(a* 43
K =——p(=) = ot 1 s
1) ==59(3) = G atgs * 19 ot
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_1+82q C+EDY) DY w+16 Y of

N=1 w|N N odd
w odd

=148 > " Y w+24 > VD w16 > (N

N odd w|N N even w|N N odd
w odd w odd
=1+24 Z q Z w
w|N
w odd
=1+24) 01(N;2)g"
N=1
1 2. 2120 4. 4\8
Kalg) = —— o (THL) = (@a )5 4590054 )
2 2 (0)8. (g% a5 (4% ¢?)%
=148 "2+ (D) D> w-32 > o(N)g"
N=1 w|N N odd
w odd

=148 Z qNZw+24 Z qNZw—?)Q Z o(N)gN

N odd w|N N even w|N N odd
w odd w odd
SEEDNEID I
N=1 w|N
wodd
=1424> (-1)Va1(N;2)g",
N=1
and
Kslg) = ——p <1) _ o (ehe?)s  galahia)s
7 N ) N (R N (T

—1+82q (24 ( Zw—SZ

N=1 w|N N odd
w odd
=148 E E w424 E E w—38 E
N odd w|N N even w|N N odd
w odd w odd

=1+424 Z qNZoJ

N even w|N
w odd

=1424 > a1(N;2)¢"

N even
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We summarize the above as follows.
Theorem 2.3. Let S1:= > x ,0a01(N;2)qY and So := 3" 5 Loon 01(N;2)gV.
Then

3. A relation of divisor functions

Theta functions with characteristics are defined as

€ ) €\2 ) € €
QL,} (Z,T)—%exp (m(n+2> T+ 2mi (n—|—§) (z—|—2>),
where e, €R, z€ Cand 7 € § = {7 € C | Im(7) > 0}. Then
0 n? . _ 2miT
0 {0] (0,27) = qu with ¢ = e*™"".
ne

Note that for g, := e?™**, we have

l ) oo
0 |:%:| (2’37_) — em/ﬁql/ﬂq;/G H(l _ q3n+3)(1 _ q3n+2qz>(1 _ q3n+1qz—1),

n=0

it is true by the Jacobi triple product identity. Thus

=

H:; v 1] e
e

z=0

1 x 3n+1 3n+2
=2mi| =+ ( ! 3n+l ! 3n+2)
6 o 1—g¢q 1—gq

Farkas showed in [3, 4] that for N, k,l > 1 with kK =1 (mod 2), &k > 3 and
1>Fk—2,
k~T1;k7l(N) 22007%,%(1\[;/{)4—1-.5'%(]\[;/{3)
N-1
+ko Y Bia (k) Bt (N = jik).

Jj=1

Finally, we obtain a similar result by differentiating further. More precisely,
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Theorem 3.1. For any n > 1, we have

n—1
ko oga(n) =20 Beo(nik) + 1 7ipa(n) + 2k - > EBet (7 K)Tupa(n — ).
j=1
Proof. Let g, = €*™*, ¢ = €*™" with z € C and 7 € §, and s = é € Q with

positive integers [, k such that £k = mod 2, k > 3, and [l < k — 2. Then we
define theta functions as

S . 2
9[ }(W — emis/2g s/ (g) (g

1+s 1-s _q

2 02)00(0 % 47 )oo-

—s _q

2 4q,

1—s —1 N
2 qZ

1

By taking logarithmic derivative with respect to z we have
1+s

1 0 "+2 q q
— Z loef .
omi Dz ° {] Jrz(1_qn+ +

n=0 qZ 1_(]

If we differentiate more with respect to z, we get
1 02
0
(2mi)? 922 log [ ]( ™)
1+s 14s
f_z ¢t e 4"
- 14s 14+s _ 9
2 q)? (=gt g t)?
1 83
— ——log 6 {8] (2,7)

(2mi)3 023
1ts 1-s _ 1-s _
— *i ¢ g (T ) T g (¢ )
— gt “55qz>3 (1— qn+%q;1)3
We now evaluate at z = 0 to obtain

1 0
37792 oge{ ](z kT) .

(3) _ _|_ Z (Z q(kn—&-k Ly Z q kn+’“2+l)m>

m=1
= % Jr;E%(n;k)q

I
— log 6 [ ] (z,kT)
(27i)2 D22 =0

o0 o0 o
e N S
n=0 \m=1 m=1
= — Z Tl;k,l(n)q
n=0
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and

1 0 s
7(27‘(2)3 @ log 9 |:1:| (Z, k'T) »

@ -- (Z miqmt I = 3 m2q(kn+kzl)m>
n=0 \m=1

Z Touk,1(1)q

n=1

Here we recall that theta functions satisfy the heat equation, that is,

9% [s 0 s

—_— = 47— .

8229[1} (z,7) maTQ[J (z,7)
Hence we achieve

92 I 01 (1) (= 7)

5221Og0[1}(’) o G[ﬂ(z T) ( Z,T)>

Y (e'm(m)
o 0[5](z,7) 0[] (z,7)

gl = (Gmeef{e )

Here the symbol ’ stands for the partial derivative with respect to z. If we take
logarithmic derivative to theta function with respect to 7, then we derive

03 s
953 log 6 L] (z,7)
00 1+s qn+12 q 1—g qn+ q 1
= —2(2mi)? ( n ) _(n+ ) )
( nzz;) ( 2 ) (1—gvtag.)? 2 ) (1—gr =g )?

Thus by evaluating at z = 0 we have
1 3 ]
—————1log¥ k
(2mi)3 023 08 H (2, k7)

z=0
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1 k—1\ ¢t A
=2 = k — (&
(kz<"+ 2 )(lq +i7t)2 (”+ 2 )(1qk"+%“)2

e (S (Srwinr))

which implies

I
El N
NE
3
]
Q@

\
NE
3
]
QS

0o n—1
+2% [ Y B (Gk)maa(n —j) | ¢
n=1 j=1

This completes the proof of theorem. ([

Remark 3.2. Let k = 3,1 =1,n = 3m+2. Then 71.31(3m+2) = 0(3m+2) and
23,1 (3m+2) = 320 g3mt2) d?x(d), where o is the usual divisor sum function
and x(d) is defined by x(d) = 1,—1,0 according as d = 1,—1,0 mod 3. Since
E1(35;3) = E1(4;3) and Eq1(35 +2;3) =0,

37’2-3 1(3m + 2)

—T13,1 3m+2 +GZ E1 3] 3 7131(3(m—j)+2)
=0
+ E1(3j + 1; 3)7’1 :3, 1(3( - ]) + 1) + E1(3j + 2;3)7‘1;371(3(171 —])))
=o(3m+2)+6Y  Ei(j;3)o(3(m — j) +2)
j=0
+6)  E1(3j + 1;3)0(3(m — §) +1).
j=0
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Thus the equation above is equivalent to

3 Z 7'2;371(3m + 2)qm

m=0
_y o(3m 4 2)¢™ +6<ZE1n3 )(Z (3n 4 2)q )
m=0 n=0 =0
+6 <§: Ei(3n+ 1;3)q"> (i o(3n + 1)q”> .
n=0 n=0

Remark 3.3. Asis well known F4 (N;3), E1(N;4), and F; 5(N;8) are important
arithmetical functions in the study of sums of squares (see [5]). In particular,
when p; =1 mod 3, ¢; =2 mod 3, u; =1 mod 4, w; = 3 mod 4, g; = 1 mod 8,
z; = 3mod 8, y; = 5mod 8 and z; = 7 mod 8 are primes, we can readily get
that

By (3"p§t - pirglt -+ qf*:3)

[ (e +1)(ep+1) if fi(1<i<s)=0mod2
10 otherwise,

Ey (2™ - - ulewt - wit 4)
(e +1)-- (g +1) ifdi(1 <i<b)=0mod?2
10 otherwise

and

Era(2ngyt - gloalt e aleylt el 200 8)

(1 +1)- ( as+1)(Br+ 1) (Ba+1)
) (1 <i<b)=6;(1<j<¢)=0mod 2,
o 0

otherwise.

Remark 3.4. In computer networking and computer science, bandwidth, net-
work bandwidth, data bandwidth or digital bandwidth is a bit rate measure or
available or consumed data communication resources expressed in bits/second
or multiples of it. When we send some data transmission in computer net-
working, they want to find small computation algorithms for them. We think
our study is very important about a simple computation in networking. Using
MATLAP, we find E1(N;3), o(N), 71,31(INV) and 72.31(N) (1 < N < 50). See
Figures 1-5.
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FIGure 1. E1(N;3) (1 < N <200)
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FIGURE 2. o(N) (1 < N <200)

FIGURE 3. 71.31(N) (1 < N <200)
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Bits

FIGURE 5. The state simulation result for bits (1 < N < 200)

N | Ey(N;3) [ o(N) | musa(N) | 7asa(N) || N | Ev(N33) | o(N) | miga(N) | 7o (N)
1 1 1 1 1 26 0 42 42 588
2 0 3 3 3 27 1 40 27 729
3 1 4 3 9 28 2 56 56 1344
4 1 7 7 21 29 0 30 30 840
5 0 6 6 24 30 0 72 54 648
6 0 12 9 27 31 2 32 32 1024
7 2 8 8 64 32 0 63 63 1323
8 0 15 15 75 33 0 48 36 1080
9 1 13 9 81 34 0 54 54 864
10 0 18 18 72 35 0 48 48 1536
11 0 12 12 120 36 1 91 63 1701
12 1 28 21 189 37 2 38 38 1444
13 2 14 14 196 38 0 60 60 1200
14 0 24 24 192 39 2 56 42 1764
15 0 24 18 216 40 0 90 90 1800
16 1 31 31 341 41 0 42 42 1680
17 0 18 18 288 42 0 96 72 1728
18 0 39 27 243 43 2 44 44 1936
19 2 20 20 400 44 0 84 84 2520
20 0 42 42 504 45 0 78 54 1944
21 2 32 24 576 46 0 72 72 1584
22 0 36 36 360 47 0 48 48 2208
23 0 24 24 528 48 1 124 93 3069
24 0 60 45 675 49 3 57 57 3249
25 1 31 31 651 50 0 93 93 1953
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