• Title/Summary/Keyword: Successive Approximation

Search Result 128, Processing Time 0.03 seconds

A 12-bit 1MS/s SAR ADC with Rail-to-Rail Input Range (Rail-to-Rail의 입력 신호 범위를 가지는 12-bit 1MS/s 축차비교형 아날로그-디지털 변환기)

  • Kim, Doo-Yeoun;Jung, Jae-Jin;Lim, Shin-Il;Kim, Su-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.355-358
    • /
    • 2010
  • As CMOS technology continues to scale down, signal processing is favorably done in the digital domain, which requires Analog-to-Digital (A/D) Converter to be integrated on-chip. This paper presents a design methodology of 12-bit 1-MS/s Rail-to-Rail fully differential SAR ADC using Deep N-well Switch based on binary search algorithm. Proposed A/D Converter has the following architecture and techniques. Firstly, chip size and power consumption is reduced due to split capacitor array architecture and charge recycling method. Secondly, fully differential architecture is used to reduce noise between the digital part and converters. Finally, to reduce the mismatch effect and noise error, the circuit is designed to be available for Rail-to-Rail input range using simple Deep N-well switch. The A/D Converter fabricated in a TSMC 0.18um 1P6M CMOS technology and has a Signal-to-Noise-and-Distortion-Ratio(SNDR) of 69 dB and Free-Dynamic-Range (SFDR) of 73 dB. The occupied active area is $0.6mm^2$.

A 12-b Asynchronous SAR Type ADC for Bio Signal Detection

  • Lim, Shin-Il;Kim, Jin Woo;Yoon, Kwang-Sub;Lee, Sangmin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.2
    • /
    • pp.108-113
    • /
    • 2013
  • This paper describes a low power asynchronous successive approximation register (SAR) type 12b analog-to-digital converter (ADC) for biomedical applications in a 0.35 ${\mu}m$ CMOS technology. The digital-to-analog converter (DAC) uses a capacitive split-arrays consisting of 6-b main array, an attenuation capacitor C and a 5-b sub array for low power consumption and small die area. Moreover, splitting the MSB capacitor into sub-capacitors and an asynchronous SAR reduce power consumption. The measurement results show that the proposed ADC achieved the SNDR of 68.32 dB, the SFDR of 79 dB, and the ENOB (effective number of bits) of 11.05 bits. The measured INL and DNL were 1.9LSB and 1.5LSB, respectively. The power consumption including all the digital circuits is 6.7 ${\mu}W$ at the sampling frequency of 100 KHz under 3.3 V supply voltage and the FoM (figure of merit) is 49 fJ/conversion-step.

Exact solutions of free vibration of rotating multilayered FGM cylinders

  • Wu, Chih-Ping;Li, Hao-Yuan
    • Smart Structures and Systems
    • /
    • v.9 no.2
    • /
    • pp.105-125
    • /
    • 2012
  • A modified Pagano method is developed for the three-dimensional (3D) free vibration analysis of simply-supported, multilayered functionally graded material (FGM) circular hollow cylinders with a constant rotational speed with respect to the meridional direction of the cylinders. The material properties of each FGM layer constituting the cylinders are regarded as heterogeneous through the thickness coordinate, and then specified to obey a power-law distribution of the volume fractions of the constituents, and the effects of centrifugal and Coriolis accelerations, as well as the initial hoop stress due to rotation, are considered. The Pagano method, which was developed for the static and dynamic analyses of multilayered composite plates, is modified in that a displacement-based formulation is replaced by a mixed formulation, the complex-valued solutions of the system equations are transferred to the real-valued solutions, a successive approximation method is adopted to extend its application to FGM cylinders, and a propagator matrix method is developed to reduce the time needed for its implementation. These modifications make the Pagano method feasible for multilayered FGM cylinders, and the computation in the implementation is independent of the total number of the layers, thus becoming less time-consuming than usual.

Scale Factor Tuning of the Fuzzy Controller Using Continuous Fuzzy Input Variables (연속형 퍼지 입력변수를 사용하는 퍼지 제어기의 환산계수 동조)

  • Lim, Young-Cheol;Park, Jong-Gun;Wi, Seog-Oh;Jung, Hyun-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1359-1361
    • /
    • 1996
  • This paper describes a design of real time fuzzy controller using Minimum fuzzy control Rule Selection Method(MRSM). The control algorithm of dynamic systems needs less computation time and memory. To reduce the computation time of fuzzy logic controller, minimum number of rules are to be selected for the fuzzy input variable. The universe of discourse is divided by the number of linguistic labels to allocate the assigned membership function to the fuzzy input variables. In this case, since fuzzy input variables are continuous, scale factor SU is tuned independently. According to increment of SU control surface is improved to adapt the change of system parameter. At this, crisp control surface is increased. With the increament of crisp control surface, fuzzy control surface is reduced. When error state deviates from desirable error state, crisp control surface is more useful than fuzzy control surface for obtaining fast rising time.

  • PDF

A study on determination of target displacement of RC frames using PSV spectrum and energy-balance concept

  • Ucar, Taner;Merter, Onur;Duzgun, Mustafa
    • Structural Engineering and Mechanics
    • /
    • v.41 no.6
    • /
    • pp.759-773
    • /
    • 2012
  • The objective of this paper is to present an energy-based method for calculating target displacement of RC structures. The method, which uses the Newmark-Hall pseudo-velocity spectrum, is called the "Pseudo-velocity Spectrum (PSVS) Method". The method is based on the energy balance concept that uses the equality of energy demand and energy capacity of the structure. First, nonlinear static analyses are performed for five, eight and ten-story RC frame structures and pushover curves are obtained. Then the pushover curves are converted to energy capacity diagrams. Seven strong ground motions that were recorded at different soil sites in Turkey are used to obtain the pseudo-acceleration and the pseudo-velocity response spectra. Later, the response spectra are idealised with the Newmark-Hall approximation. Afterwards, energy demands for the RC structures are calculated using the idealised pseudo-velocity spectrum. The displacements, obtained from the energy capacity diagrams that fit to the energy demand values of the RC structures, are accepted as the energy-based performance point of the structures. Consequently, the target displacement values determined from the PSVS Method are checked using the displacement-based successive approach in the Turkish Seismic Design Code. The results show that the target displacements of RC frame structures obtained from the PSVS Method are very close to the values calculated by the approach given in the Turkish Seismic Design Code.

A simple prediction procedure of strain-softening surrounding rock for a circular opening

  • Wang, Feng;Zou, Jin-Feng
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.619-626
    • /
    • 2018
  • A simple prediction procedure was investigated for calculating the stresses and displacements of a circular opening. Unlike existed approaches, the proposed approach starts each step with a radius increment. The stress for each annulus could be obtained analytically, while strain increments for each step can be determinate numerically from the compatility equation by finite difference approximation, flow rule and Hooke's law. In the successive manner, the distributions of stresses and displacements could be found. It should be noted that the finial radial stress and displacement were equal to the internal supporting pressure and deformation at the tunnel wall, respectively. By assuming different plastic radii, GRC and the evolution curve of plastic radii and internal supporting pressures could be obtained conveniently. Then the real plastic radius can be calculated by using linear interpolation in the evolution curve. Some numerical and engineering examples were performed to demonstrate the accuracy and validity for the proposed procedure. The comparisons results show that the proposed procedure was faster than that in Lee and Pietrucszczak (2008). The influence of annulus number and dilation on the accuracy of solutions was also investigated. Results show that the larger the annulus number was, the more accurate the solutions were. Solutions in Park et al. (2008) were significantly influenced by dilation.

Combining Model-based and Heuristic Techniques for Fast Tracking the Global Maximum Power Point of a Photovoltaic String

  • Shi, Ji-Ying;Xue, Fei;Ling, Le-Tao;Li, Xiao-Fei;Qin, Zi-Jian;Li, Ya-Jing;Yang, Ting
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.476-489
    • /
    • 2017
  • Under partial shading conditions (PSCs), multiple maximums may be exhibited on the P-U curve of string inverter photovoltaic (PV) systems. Under such conditions, heuristic methods are invalid for extracting a global maximum power point (GMPP); intelligent algorithms are time-consuming; and model-based methods are complex and costly. To overcome these shortcomings, a novel hybrid MPPT (MPF-IP&O) based on a model-based peak forecasting (MPF) method and an improved perturbation and observation (IP&O) method is proposed. The MPF considers the influence of temperature and does not require solar radiation measurements. In addition, it can forecast all of the peak values of the PV string without complex computation under PSCs, and it can determine the candidate GMPP after a comparison. Hence, the MPF narrows the searching range tremendously and accelerates the convergence to the GMPP. Additionally, the IP&O with a successive approximation strategy searches for the real GMPP in the neighborhood of the candidate one, which can significantly enhance the tracking efficiency. Finally, simulation and experiment results show that the proposed method has a higher tracking speed and accuracy than the perturbation and observation (P&O) and particle swarm optimization (PSO) methods under PSCs.

Inter-frame vertex selection algorithm for lossy coding of shapes in video sequences (동영상에서의 모양 정보 부호화를 위한 정점 선택 알고리즘)

  • Suh, Jong-Yeul;Kim, Kyong-Joong;Kang, Moon-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.4
    • /
    • pp.35-45
    • /
    • 2000
  • The vertex-based boundary encoding scheme is widely used in object-based video coding area and computer graphics due to its scalability with natural looking approximation. Existing single framebased vertex encoding algorithm is not efficient for temporally correlated video sequences because it does not remove temporal redundancy. In the proposed method, a vertex point is selected from not only the boundary points of the current frame but also the vertex points of the previous frame to remove temporal redundancy of shape information in video sequences. The problem of selecting optimal vertex points is modeled as finding shortest path in the directed acyclic graph with weight The boundary is approximated by a polygon which can be encoded with the smallest number of bits for maximum distortion. The temporal redundancy between two successive frames is efficiently removed with the proposed scheme, resulting in lower bit-rate than the conventional algorithms.

  • PDF

The Analysis of Total Ionizing Dose Effects on Analog-to-Digital Converter for Space Application (우주용 ADC의 누적방사선량 영향 분석)

  • Kim, Tae-Hyo;Lee, Hee-Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.85-90
    • /
    • 2013
  • In this paper, 6bit SAR ADC tolerant to ionizing radiation is presented. Radiation tolerance is achieved by using the Dummy Gate Assisted (DGA) MOSFET which was proposed to suppress the leakage current induced by ionizing radiation and its comparing sample is designed with the conventional MOSFET. The designed ADC consists of binary capacitor DAC, dynamic latch comparator, and digital logic and was fabricated using a standard 0.35um CMOS process. Irradiation was performed by Co-60 gamma ray. After the irradiation, ADC designed with the conventional MOSFET did not operate properly. On the contrary, ADC designed with the DGA MOSFET showed a little parametric degradation of which DNL was increased from 0.7LSB to 2.0LSB and INL was increased from 1.8LSB to 3.2LSB. In spite of its parametric degradation, analog to digital conversion in the ADC with DGA MOSFET was found to be possible.

A 12 bit 750 kS/s 0.13 mW Dual-sampling SAR ADC

  • Abbasizadeh, Hamed;Lee, Dong-Soo;Yoo, Sang-Sun;Kim, Joon-Tae;Lee, Kang-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.760-770
    • /
    • 2016
  • A 12-bit 750 kS/s Dual-Sampling Successive Approximation Register Analog-to-Digital Converter (SAR ADC) technique with reduced Capacitive DAC (CDAC) is presented in this paper. By adopting the Adaptive Power Control (APC) technique for the two-stage latched type comparator and using bootstrap switch, power consumption can be reduced and overall system efficiency can be optimized. Bootstrapped switches also are used to enhance the sampling linearity at a high input frequency. The proposed SAR ADC reduces the average switching energy compared with conventional SAR ADC by adopting reduced the Most Significant Bit (MSB) cycling step with Dual-Sampling of the analog signal. This technique holds the signal at both comparator input asymmetrically in sample mode. Therefore, the MSB can be calculated without consuming any switching energy. The prototype SAR ADC was implemented in $0.18-{\mu}m$ CMOS technology and occupies $0.728mm^2$. The measurement results show the proposed ADC achieves an Effective Number-of-Bits (ENOB) of 10.73 at a sampling frequency of 750 kS/s and clock frequency of 25 MHz. It consumes only 0.13 mW from a 5.0-V supply and achieves the INL and DNL of +2.78/-2.45 LSB and +0.36/-0.73 LSB respectively, SINAD of 66.35 dB, and a Figures-of-Merit (FoM) of a 102 fJ/conversion-step.