• Title/Summary/Keyword: Subthreshold

Search Result 465, Processing Time 0.029 seconds

A New Scaling Theory for the Effective Conducting Path Effect of Dual Material Surrounding Gate Nanoscale MOSFETs

  • Balamurugan, N.B.;Sankaranarayanan, K.;Suguna, M.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.1
    • /
    • pp.92-97
    • /
    • 2008
  • In this Paper, we present a scaling theory for dual material surrounding gate (DMSGTs) MOSFETs, which gives a guidance for the device design and maintaining a precise subthreshold factor for given device parameters. By studying the subthreshold conducting phenomenon of DMSGTs, the effective conductive path effect (ECPE) is employed to acquire the natural length to guide the design. With ECPE, the minimum channel potential is used to monitor the subthreshold behavior. The effect of ECPE on scaling factor significantly improves the subthreshold swing compared to conventional scaling rule. This proposed model offers the basic designing guidance for dual material surrounding gate MOSFETs.

Design of DGMOSFET for Optimum Subthreshold Characteristics using MicroTec

  • Jung, Hak-Kee;Han, Ji-Hyeong
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.4
    • /
    • pp.449-452
    • /
    • 2010
  • We have analyzed channel doping and dimensions(channel length, width and thickness) for the optimum subthreshold characteristics of DG(Double Gate) MOSFET based on the model of MicroTec 4.0. Since the DGMOSFET is the candidate device to shrink short channel effects, the determination of design rule for DGMOSFET is very important to develop sub-100nm devices for high speed and low power consumption. As device size scaled down, the controllability of dimensions and oxide thickness is very low. We have analyzed the short channel effects for the variation of channel dimensions, and found the design conditions of DGMOSFET having the optimum subthreshold characteristics for digital applications.

Analysis of Subthreshold Swing for Doping Distribution Function of Asymmetric Double Gate MOSFET (도핑분포함수에 따른 비대칭 MOSFET의 문턱전압이하 스윙 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1143-1148
    • /
    • 2014
  • This paper has analyzed the change of subthreshold swing for doping distribution function of asymmetric double gate(DG) MOSFET. The basic factors to determine the characteristics of DGMOSFET are dimensions of channel, i.e. channel length and channel thickness, and doping distribution function. The doping distributions are determined by ion implantation used for channel doping, and follow Gaussian distribution function. Gaussian function has been used as carrier distribution in solving the Poisson's equation. Since the Gaussian function is exactly not symmetric for top and bottome gates, the subthreshold swings are greatly changed for channel length and thickness, and the voltages of top and bottom gates for asymmetric double gate MOSFET. The deviation of subthreshold swings has been investigated for parameters of Gaussian distribution function such as projected range and standard projected deviation in this paper. As a result, we know the subthreshold swing is greatly changed for doping profiles and bias voltage.

Analysis of Subthreshold Current Deviation for Channel Dimension of Double Gate MOSFET (이중게이트 MOSFET의 채널 크기에 따른 문턱전압이하 전류 변화 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.123-128
    • /
    • 2014
  • This paper analyzed the change of subthreshold current for channel dimension of double gate(DG) MOSFET. The nano-structured DGMOSFET to reduce the short channel effect had to be preciously analyze. Poisson's equation had been used to analyze the potential distribution in channel, and Gaussian function had been used as carrier distribution. The subthreshold current had been analyzed for device parameters such as channel dimension, and projected range and standard projected deviation of Gaussian function. Since this potential model was verified in the previous papers, we used this model to analyze the subthreshold current. Resultly, we know the subthreshold current was influenced on parameters of Gaussian function and channel dimension for DGMOSFET.

Subthreshold Characteristics of Double Gate MOSFET for Gaussian Function Distribution (도핑분포함수의 형태에 따른 DGMOSFET의 문턱전압이하특성)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1260-1265
    • /
    • 2012
  • This paper have presented the change for subthreshold characteristics for double gate(DG) MOSFET based on scaling theory and the shape of Gaussian function. To obtain the analytical solution of Poisson's equation, Gaussian function been used as carrier distribution and consequently potential distributions have been analyzed closely for experimental results, and the subthreshold characteristics have been analyzed for the shape parameters of Gaussian function such as projected range and standard projected deviation. Since this potential model has been verified in the previous papers, we have used this model to analyze the subthreshold chatacteristics. The scaling theory is to sustain constant outputs for the change of device parameters. As a result to apply the scaling theory for DGMOSFET, we know the subthreshold characteristics have been greatly changed, and the change of threshold voltage is bigger relatively.

Analysis of Subthreshold Behavior of FinFET using Taurus

  • Murugan, Balasubramanian;Saha, Samar K.;Venkat, Rama
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.1
    • /
    • pp.51-55
    • /
    • 2007
  • This paper investigates the subthreshold behavior of Fin Field Effect Transistor (FinFET). The FinFET is considered to be an alternate MOSFET structure for the deep sub-micron regime, having excellent device characteristics. As the channel length decreases, the study of subthreshold behavior of the device becomes critically important for successful design and implementation of digital circuits. An accurate analysis of subthreshold behavior of FinFET was done by simulating the device in a 3D process and device simulator, Taurus. The subthreshold behavior of FinFET, was measured using a parameter called S-factor which was obtained from the $In(I_{DS})\;-\;V_{GS}$ characteristics. The value of S-factor of devices of various fin dimensions with channel length $L_g$ in the range of 20 nm - 50 nm and with the fin width $T_{fin}$ in the range of 10 nm - 40 nm was calculated. It was observed that for devices with longer channel lengths, the value of S-factor was close to the ideal value of 60 m V/dec. The S-factor increases exponentially for channel lengths, $L_g\;<\;1.5\;T_{fin}$. Further, for a constant $L_g$, the S factor was observed to increase with $T_{fin}$. An empirical relationship between S, $L_g$ and $T_{fin}$ was developed based on the simulation results, which could be used as a rule of thumb for determining the S-factor of devices.

Doping Profile Dependent Subthreshold Swing for Double Gate MOSFET (DGMOSFET에서 문턱전압이하 스윙의 도핑분포 의존성)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1764-1770
    • /
    • 2011
  • In this paper, the subthreshold swings for doping distribution in the channel have been analyzed in double gate MOSFET(DGMOSFET). The DGMOSFET is extensively been studying since it can lessen the short channel effects(SCEs) as next -generation nano device. The degradation of subthreshold swing(SS) known as SCEs has greatly influenced on application of digital devices, and has been analyzed for structural parameter and variation of channel doping profile in DGMOSFET. The analytical model of Poisson equation has been derived from nonuniform doping distribution for DGMOSFET. To verify potential and subthreshold swing model based on this analytical Poisson's equation, the results have been compared with those of the numerical Poisson's equation, and subthreshold swing for DGMOSFET has been analyzed using these models.

Analysis of Subthreshold Current Deviation for Gate Oxide Thickness of Double Gate MOSFET (게이트 산화막 두께에 따른 이중게이트 MOSFET의 문턱전압이하 전류 변화 분석)

  • Jung, Hakkee;Jeong, Dongsoo;Lee, Jong-In;Kwon, Oshin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.762-765
    • /
    • 2013
  • This paper analyzed the change of subthreshold current for gate oxide thickness of double gate(DG) MOSFET. Poisson's equation had been used to analyze the potential distribution in channel, and Gaussian function had been used as carrier distribution. The potential distribution was obtained as the analytical function of channel dimension, using the boundary condition. The subthreshold current had been analyzed for gate oxide thickness, and projected range and standard projected deviation of Gaussian function. Since this analytical potential model was verified in the previous papers, we used this model to analyze the subthreshold current. Resultly, we know the subthreshold current was influenced on parameters of Gaussian function and gate oxide thickness for DGMOSFET.

  • PDF

Analysis of Subthreshold Current Deviation for Gate Oxide Thickness of Double Gate MOSFET (채널도핑농도에 따른 이중게이트 MOSFET의 문턱전압이하 전류 변화 분석)

  • Jung, Hakkee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.768-771
    • /
    • 2013
  • This paper analyzed the change of subthreshold current for channel doping concentration of double gate(DG) MOSFET. Poisson's equation had been used to analyze the potential distribution in channel, and Gaussian function had been used as carrier distribution. The potential distribution was obtained as the analytical function of channel dimension, using the boundary condition. The subthreshold current had been analyzed for channel doping concentration, and projected range and standard projected deviation of Gaussian function. Since this analytical potential model was verified in the previous papers, we used this model to analyze the subthreshold current. As a result, we know the subthreshold current was influenced on parameters of Gaussian function and channel doping concentration for DGMOSFET.

  • PDF

Analysis of Subthreshold Current Deviation for Channel Dimension of Double Gate MOSFET (이중게이트 MOSFET의 채널크기 변화 따른 문턱전압이하 전류 변화 분석)

  • Jung, Hakkee;Jeong, Dongsoo;Lee, Jongin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.753-756
    • /
    • 2013
  • This paper analyzed the change of subthreshold current for channel dimension of double gate(DG) MOSFET. The nano-structured DGMOSFET to reduce the short channel effect had to be preciously analyze. Poisson's equation had been used to analyze the potential distribution in channel, and Gaussian function had been used as carrier distribution. The subthreshold current had been analyzed for device parameters such as channel dimension, and projected range and standard projected deviation of Gaussian function. Since this potential model was verified in the previous papers, we used this model to analyze the subthreshold current. Resultly, we know the subthreshold current was influenced on parameters of Gaussian function and channel dimension for DGMOSFET.

  • PDF