• 제목/요약/키워드: Subnormal

검색결과 83건 처리시간 0.019초

A Note on Subnormal and Hyponormal Derivations

  • Lauric, Vasile
    • Kyungpook Mathematical Journal
    • /
    • 제48권2호
    • /
    • pp.281-286
    • /
    • 2008
  • In this note we prove that if A and $B^*$ are subnormal operators and is a bounded linear operator such that AX - XB is a Hilbert-Schmidt operator, then f(A)X - Xf(B) is also a Hilbert-Schmidt operator and $${\parallel}f(A)X\;-\;Xf(B){\parallel}_2\;\leq\;L{\parallel}AX\;-\;XB{\parallel}_2$$, for f belonging to a certain class of functions. Furthermore, we investigate the similar problem in the case that S, T are hyponormal operators and $X\;{\in}\;\cal{L}(\cal{H})$ is such that SX - XT belongs to a norm ideal (J, ${\parallel}\;{\cdot}\;{\parallel}_J$) and prove that f(S)X - Xf(T) $\in$ J and ${\parallel}f(S)X\;-\;Xf(T){\parallel}_J\;\leq\;C{\parallel}SX\;-\;XT{\parallel}_J$, for f in a certain class of functions.

ON UNBOUNDED SUBNOMAL OPERATORS

  • Jin, Kyung-Hee
    • 대한수학회보
    • /
    • 제30권1호
    • /
    • pp.65-70
    • /
    • 1993
  • In this paper we will extend some notions of bounded linear operators to some unbounded linear operators. Let H be a complex separable Hilbert space and let B(H) denote the algebra of bounded linear operators. A closed densely defind linear operator S in H, with domain domS, is called subnormal if there is a Hilbert space K containing H and a normal operator N in K(i.e., $N^{*}$N=N $N^*/)such that domS .subeq. domN and Sf=Nf for f .mem. domS. we will show that the Radjavi and Rosenthal theorem holds for some unbounded subnormal operators; if $S_{1}$ and $S_{2}$ are unbounded subnormal operators on H with dom $S_{1}$= dom $S^{*}$$_{1}$ and dom $S_{2}$=dom $S^{*}$$_{2}$ and A .mem. B(H) is injective, has dense range and $S_{1}$A .coneq. A $S^{*}$$_{2}$, then $S_{1}$ and $S_{2}$ are normal and $S_{1}$.iden. $S^{*}$$_{2}$.2}$.X>.

  • PDF

SEMI-CUBICALLY HYPONORMAL WEIGHTED SHIFTS WITH STAMPFLI'S SUBNORMAL COMPLETION

  • Baek, Seunghwan;Lee, Mi Ryeong
    • 대한수학회논문집
    • /
    • 제34권2호
    • /
    • pp.477-486
    • /
    • 2019
  • Let ${\alpha}:1,(1,{\sqrt{x}},{\sqrt{y}})^{\wedge}$ be a weight sequence with Stampfli's subnormal completion and let $W_{\alpha}$ be its associated weighted shift. In this paper we discuss some properties of the region ${\mathcal{U}}:=\{(x,y):W_{\alpha}$ is semi-cubically hyponormal} and describe the shape of the boundary of ${\mathcal{U}}$. In particular, we improve the results of [19, Theorem 4.2].