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ON PUTINAR’S MATRICIAL MODEL OPERATOR OF
RANK 2

Jun Ik Lee*

Abstract. In this paper we study the Putinar’s matricial model
operator of rank 2 and provide some evidences for the validity of
the conjecture in [8].

1. Introduction

Let H and K be complex Hilbert spaces, let L(H,K) be the set of
bounded linear operators from H to K and write L(H) := L(H,H). An
operator T ∈ L(H) is said to be normal if T ∗T = TT ∗, quasinormal if
T ∗T 2 = TT ∗T , hyponormal if T ∗T ≥ TT ∗, and subnormal if it has a
normal extension, i.e., T = N |H, where N is a normal operator on some
Hilbert space K containingH. In general it is quite difficult to determine
the subnormality of an operator by definition. An alternative description
of subnormality is given by the Bram-Halmos criterion, which states that
an operator T is subnormal if and only if

∑

i,j

(T ixj , T
jxi) ≥ 0

for all finite collections x0, x1, · · · , xk ∈ H ([3],[4, II.1.9]). It is easy to
see that this is equivalent to the following positivity test:

(1.1)




I T ∗ . . . T ∗k

T T ∗T . . . T ∗kT
...

...
. . .

...
T k T ∗T k . . . T ∗kT k


 ≥ 0 (all k ≥ 1 ).
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Condition (1.1) provides a measure of the gap between hyponormality
and subnormality. In fact, the positivity condition (1.1) for k = 1 is
equivalent to the hyponormality of T , while subnormality requires the
validity of (1.1) for all k. Let [A,B] := AB−BA denote the commutator
of two operators A and B, and define T to be k-hyponormal whenever
the k × k operator matrix

(1.2) Mk(T ) := ([T ∗j , T i])k
i,j=1

is positive.
We now review a few essential facts concerning weak subnormality

that we will need to begin with. Note that the operator T is subnormal
if and only if there exist operators A and B such that T̂ :=

(
T A
0 B

)
is

normal, i.e.,

(1.3)





[T ∗, T ] := T ∗T − TT ∗ = AA∗

A∗T = BA∗

[B∗, B] + A∗A = 0.

An operator T ∈ L(H) is said to be weakly subnormal if there exist
operators A ∈ L(H′,H) and B ∈ L(H′) such that the first two conditions
in (1.3) hold:

(1.4) [T ∗, T ] = AA∗ and A∗T = BA∗,

or equivalently, there is an extension T̂ of T such that

T̂ ∗T̂ f = T̂ T̂ ∗f for all f ∈ H.

The operator T̂ is called a partially normal extension (briefly, p.n.e.) of
T . We also say that T̂ in L(K) is a minimal partially normal extension
(briefly, m.p.n.e.) of T if K has no proper subspace containing H to
which the restriction of T̂ is also a partially normal extension of T . It
is known ([6, Lemma 2.5 and Corollary 2.7]) that

T̂ = m.p.n.e.(T ) ⇐⇒ K =
∨{

T̂ ∗nh : h ∈ H, n = 0, 1
}
,

and the m.p.n.e.(T ) is unique. For convenience, if T̂ = m.p.n.e. (T )

is also weakly subnormal then we write T̂ (2) := ̂̂
T and more generally,

T̂ (n) := ̂̂
T (n−1). It was ([6], [5]) shown that

(1.5) 2-hyponormal =⇒ weakly subnormal =⇒ hyponormal

and the converses of both implications in (1.5) are not true in general.
In particular, the following lemma is very useful in the sequel.
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Lemma 1.1. ([6], [5]) Let T ∈ L(H).
(a) If T is weakly subnormal then the operator A in (1.4) can be taken

as a positive operator;
(b) If T is weakly subnormal then ker [T ∗, T ] is invariant for T ;
(c) For any k ≥ 1, T is (k + 1)-hyponormal if and only if T is weakly

subnormal and T̂ := m.p.n.e.(T ) is k-hyponormal.

The self-commutator of an operator plays an important role in the
study of subnormality. Subnormal operators with finite rank self-commu-
tators have been extensively studied ([2], [9], [11], [16], [17], [18], [20],
[21]). Particular attention has been paid to hyponormal operators with
rank 1 or rank 2 self-commutators ([7], [10], [12], [13], [14], [16], [19],
[22]). In particular, B. Morrel [10] showed that a pure subnormal oper-
ator with rank 1 self-commutator (pure means having no normal sum-
mand) is unitarily equivalent to a linear function of the unilateral shift.

It is worth to noticing that in view of (1.5) and Lemma 1 (a), Morrel’s
theorem gives that every weakly subnormal operator with rank 1 self-
commutator is subnormal.

2. The main results

M. Putinar [15] gave a matricial model for the hyponormal operator
T ∈ L(H) with finite rank self-commutator, in the cases where

H0 :=
∞∨

k=0

T ∗k
(
ran [T ∗, T ]

)
has finite dimension d and H =

∞∨

n=0

TnH0.

Let Gn :=
∨n

k=0 T kH0 (n ≥ 0) and Hn := Gn ª Gn−1 (n ≥ 1).
If dim (Hn) = dim (Hn+1) = d (n ≥ 0), then T has the following two-
diagonal structure relative to the decompositionH = H0⊕H1⊕· · · ([15]):

(2.1) T =




B0 0 0 0 · · ·
A0 B1 0 0 · · ·
0 A1 B2 0 · · ·
0 0 A2 B3 · · ·
...

...
...

...
. . .




,

where

(2.2)





[T ∗, T ] = ([B∗
0 , B0] + A∗0A0)⊕ 0∞;

[B∗
n+1, Bn+1] + A∗n+1An+1 = AnA∗n (n ≥ 0);

A∗nBn+1 = BnA∗n (n ≥ 0).
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We will refer the operator (2.1) to the Putinar’s matricial model operator
of rank d. This model was also introduced in [7], [12], [19], [20], and etc.

In [8], using the Agler’s characterization of subnormality [1], the au-
thors showed the following theorems:

Theorem 2.1. ([8]) Let T ∈ L(H). If

(i) T is a pure hyponormal operator;
(ii) [T ∗, T ] is of rank 2; and
(iii) ker [T ∗, T ] is invariant for T ,

then the following hold:

1. If T |ker [T ∗,T ] has the rank 1 self-commutator then T is subnormal;
2. If T |ker [T ∗,T ] has the rank 2 self-commutator then T is either a

subnormal operator or the Putinar’s matricial model operator of
rank 2.

Theorem 2.2. ([8]) The operator T in (2.1) is subnormal if Bn is
normal for some n ≥ 0.

Also, they conjectured that:

Conjecture 2.3. ([8]) The Putinar’s matricial model operator of
rank 2 is subnormal.

In this paper we examine the validity of the Conjecture 2.3, and we
provide some affirmative evidences for the Conjecture 2.3. If A0 and A1

in (2.1) commute, we then have :

Theorem 2.4. Let T be the Putinar’s matricial model operator of
rank 2. If A0 and A1 in (2.1) commute then T is either subnormal or is of
the following form by a translation or a multiplication by an appropriate

scalar: Aj =
(

pj 0
0 qj

)
and Bj =

(
0 bj

cj 0

)
for j = 0, 1, · · · , that is,

(2.3) T =




0 b0 0 0 . . .
c0 0 0 0 . . .
p0 0 0 b1 . . .
0 q0 c1 0 . . .
0 0 p1 0 . . .
0 0 0 q1 . . .
...

...
...

...
. . .




.
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Proof. Let

Tn :=




Bn 0 0 0 . . .
An Bn+1 0 0 . . .
0 An+1 Bn+2 0 . . .
0 0 An+2 Bn+3 . . .
...

...
...

...
. . .




(n = 0, 1, · · · ).

By [8], we can see that Tn is the minimal partially normal extension of
Tn+1 for each n ≥ 0. Thus, by Lemma 1.1 (a), we can assume that An

is positive for each n ≥ 0.
Since A0 and A1 are diagonalizable and A0 and A1 commute, we can see
that A0 and A1 are simultaneously diagonalizable. So we can write

An :=
(

pn 0
0 qn

)
(n = 0, 1).

Also write

Bn :=
(

an bn

cn dn

)
(n = 0, 1).

By the third equality of (2.2), we have




a0 = a1 =: a;
d0 = d1 =: d;
p0b1 = b0q0;
c0p0 = q0c1 .

If a = d then by a translation we have

Bn =
(

0 bn

cn 0

)
(n = 0, 1).

So by the third equality of (2.2), B2 is skew diagonal and in turn, by the
second equality of (2.2), A2 is diagonal. Repeating this argument with a
telescoping method shows that Bn is skew diagonal and An is diagonal
for each n = 0, 1, · · · . Thus T is of the form (2.3).

Now suppose a 6= d. By a translation and a multiplication by an
appropriate scalar, write

Bn :=
(

a bn

cn 0

)
(a ∈ R, a 6= 0, n = 0, 1).

By the second equality of (2.2),

[B∗
1 , B1] =

(|c1|2 − |b1|2 ab1 − ac1

ab1 − ac1 |b1|2 − |c1|2
)
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is diagonal, and hence b1 = c1. Thus B1 is normal. Therefore, by
Theorem 2.2, T is subnormal.

We now give general sufficient conditions for the subnormality of T
in (2.3).

Theorem 2.5. The operator T in (2.3) is subnormal if one of the
following holds:

(i) pn ≥ qn (or qn ≥ pn) for all n = m,m + 1, · · · ;
(ii) qn ≥ |cn| and pn ≥ |bn| for some n ≥ 0;
(iii) |bn| = |cn| for some n ≥ 0;
(iv) pn = qn for some n ≥ 0;
(v) pn = pn+1 (or qn = qn+1) for some n ≥ 0;
(vi) |bn| = |bn+1| (or |cn| = |cn+1|) for some n ≥ 0.

Proof. First of all, observe that from the second and third equalities
of (2.2),

(2.4)





p2
n+1 = p2

n + |bn+1|2 − |cn+1|2;
q2
n+1 = q2

n − |bn+1|2 + |cn+1|2;
pnbn+1 = bnqn;
cnpn = qncn+1.

(i) Without loss of generality we may assume pn ≥ qn for all n =
0, 1, · · · . Thus {|bn|} is decreasing and {|cn|} is increasing. By using the
fourth recursive formula of (2.4) repeatedly, we have

cn+1 =




n∏

j=0

pj

qj


 c0.

Since pj

qj
≥ 1 for each j ≥ 0, the sequence {|cn|} should converge, so

that
∑∞

j=0 Log (pj

qj
) converges, and hence the sequence {pj

qj
} converges

to 1. Similarly, the sequence {|bn|} converges. Say b := lim |bn| and
c := lim |cn|. We now claim that b = c. Assume to the contrary that
c > b and let ε := c2 − b2 > 0. Then there exists N ∈ Z+ such that
|cn+1|2 − |bn+1|2 ≥ ε

2 for all n ≥ N . Then by the second equality of
(2.4), if n ≥ N then

q2
n+m ≥ q2

n +
ε

2
m →∞ as m →∞,

which implies that the sequence {qn} is unbounded, a contradiction. If
instead b > c then again the sequence {pn} is unbounded, a contra-
diction. This proves b = c. Since {|bn|} is decreasing and {|cn|} is
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increasing, we can see that

(2.5) bn ≥ cn for all n ≥ 0.

Thus by (2.4) and (2.5) we can conclude that {pn} is increasing and
{qn} is decreasing. So both {pn} and {qn} converge. But since pn

qn
→ 1,

we can say pn → p and qn → p for some p > 0. So

p0 ≤ p1 ≤ p2 ≤ · · · ≤ p ≤ · · · ≤ q2 ≤ q1 ≤ q0.

But since p0 ≥ q0 it follows that pn = p = qn for all n ≥ 0. By (2.5),
this also implies that |bn| = |cn| for all n ≥ 0. Therefore all the Bn are
normal. By Theorem 2.2, we can conclude that T is subnormal.

(ii) Without loss of generality, we may assume that q0 ≥ |c0| and
p0 ≥ |b0|. If we put

A−1 :=
(
[B∗

0 , B0] + A2
0

) 1
2 and B−1 := A−1B0A

−1
−1

then T̂ :=
(

B−1 0
A−1 T

)
= m.p.n.e.(T ). So we need to show that

[T̂ ∗, T̂ ] =
(
[B∗
−1, B−1] + A2

−1

)⊕ 0∞ ≥ 0.

A straightforward calculation shows that

A−1 =
( |c0|2−|b0|2+p2

0 0

0 |b0|2−|c0|2+q2
0

)
and B−1 =

(
0 p−1

q−1
b0

q−1

p−1
c0 0

)
,

where

p−1 :=
(|c0|2 − |b0|2 + p2

0

) 1
2 and q−1 :=

(|b0|2 − |c0|2 + q2
0

) 1
2 .

So
[B∗
−1, B−1] + A2

−1

=

( (
q−1
p−1

)2|c0|2−
(

p−1
q−1

)2|b0|2+p2
−1 0

0
(

p−1
q−1

)2|b0|2−
(

q−1
p−1

)2|c0|2+q2
−1

)
.

Observe that if q0 ≥ |c0| then

(
q−1

p−1

)2

|c0|2 −
(

p−1

q−1

)2

|b0|2 + p2
−1

=
1

p2
−1q

2
−1

(
q4
−1|c0|2 − p4

−1|b0|2 + q2
−1p

4
−1

)

=
1

p2
−1q

2
−1

(
q4
−1|c0|2 + p4

−1(q
2
0 − |c0|2)

)

≥ 0
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and similarly, if p0 ≥ |b0| then
(

p−1

q−1

)2

|b0|2 −
(

q−1

p−1

)2

|c0|2 + q2
−1 ≥ 0,

and therefore [B∗
−1, B−1] + A2

−1 ≥ 0. So T is 2-hyponormal. But since
if we put

b−1 :=
p−1

q−1
b0 and c−1 :=

q−1

p−1
c0

then

p2
−1 − |b−1|2 =

p2
−1

q2
−1

(
q2
−1 − |b0|2

)
=

p2
−1

q2
−1

(
q2
0 − |c0|2

) ≥ 0

and

q2
−1 − |c−1|2 =

q2
−1

p2
−1

(
p2
−1 − |c0|2

)
=

q2
−1

p2
−1

(
p2
0 − |b0|2

) ≥ 0,

we can repeat the above argument. Thus T is k-hyponormal for every
k ∈ Z+ and hence T is subnormal.

(iii) Since |bn| = |cn| for some n ≥ 0, Bn is normal. Thus, it follows
from Theorem 2.2.

(iv) Without loss of generality, we may assume p0 = q0. So we can
write A0 = ( 1 0

0 1 ) and hence B0 = B1 by the third equality of (2.2). Now
if we define

A−1 :=
(
[B∗

0 , B0] + A2
0

) 1
2 and B−1 := A−1B0A

−1
−1,

then T̂ :=
(

B−1 0
A−1 T

)
= m.p.n.e.(T ). So we need to shows that

[T̂ ∗, T̂ ] =
(
[B∗
−1, B−1] + A2

−1

)⊕ 0∞ ≥ 0.

A straightforward calculation shows that

A−1 = P−1A1P and B−1 = B2

where P := ( 0 1
1 0 ) . So

[B∗
−1, B−1] + A2

−1 = P−1A2
2P ≥ 0.

Thus we see that T is 2-hyponormal. Similarly, we can repeat this
backward extension. Therefore we can conclude that T is subnormal.

(v) If pn = pn+1 (or qn = qn+1), then by the first (or second) equality
of (2.4) we have |bn+1| = |cn+1|. Therefore the result follows from (iv).

(vi) If |bn| = |bn+1| 6= 0 (or |cn| = |cn+1| 6= 0), then by the third (or
fourth) equality of (2.4) we have pn = qn. Therefore the result follows
from (iii). If instead |bn| = |bn+1| = 0 (or |cn| = |cn+1| = 0), then
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by the second (or first) equality of (2.4), we have qn+1 ≥ |cn+1| (or
pn+1 ≥ |bn+1|). Therefore the result follows from (ii).

We thus have :

Theorem 2.6. Let T be the Putinar’s matricial model operator of
rank 2. If the matrix Bj in (2.1) is of the form Bj = ( 0 a

0 0 ) for some
a ∈ C and for some j ≥ 0 then T is subnormal.

Proof. Without loss of generality we can assume j = 0. By Lemma
1.1 (a), we can also write A0 =

(
p0 0
0 q0

)
. From the third equality of (2.2)

we can see that B1 is of the form B1 =
(

0 b1
0 0

)
for some b1 ∈ C. Let

A1 ≡
( p1 r1

r1 q1

)
be positive. Then by the second equality of (2.2), we have

r1 = 0. It thus follows that A1 is a diagonal matrix. Therefore T is
subnormal by Theorem 2.4 and Theorem 2.5 (vi).
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