ON PUTINAR'S MATRICIAL MODEL OPERATOR OF RANK 2

Jun Ik Lee*

Abstract

In this paper we study the Putinar's matricial model operator of rank 2 and provide some evidences for the validity of the conjecture in [8].

1. Introduction

Let \mathcal{H} and \mathcal{K} be complex Hilbert spaces, let $\mathcal{L}(\mathcal{H}, \mathcal{K})$ be the set of bounded linear operators from \mathcal{H} to \mathcal{K} and write $\mathcal{L}(\mathcal{H}):=\mathcal{L}(\mathcal{H}, \mathcal{H})$. An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be normal if $T^{*} T=T T^{*}$, quasinormal if $T^{*} T^{2}=T T^{*} T$, hyponormal if $T^{*} T \geq T T^{*}$, and subnormal if it has a normal extension, i.e., $T=\left.N\right|_{\mathcal{H}}$, where N is a normal operator on some Hilbert space \mathcal{K} containing \mathcal{H}. In general it is quite difficult to determine the subnormality of an operator by definition. An alternative description of subnormality is given by the Bram-Halmos criterion, which states that an operator T is subnormal if and only if

$$
\sum_{i, j}\left(T^{i} x_{j}, T^{j} x_{i}\right) \geq 0
$$

for all finite collections $x_{0}, x_{1}, \cdots, x_{k} \in \mathcal{H}([3],[4$, II.1.9]). It is easy to see that this is equivalent to the following positivity test:

$$
\left(\begin{array}{cccc}
I & T^{*} & \ldots & T^{* k} \tag{1.1}\\
T & T^{*} T & \ldots & T^{* k} T \\
\vdots & \vdots & \ddots & \vdots \\
T^{k} & T^{*} T^{k} & \ldots & T^{* k} T^{k}
\end{array}\right) \geq 0 \quad(\text { all } k \geq 1)
$$

[^0]Condition (1.1) provides a measure of the gap between hyponormality and subnormality. In fact, the positivity condition (1.1) for $k=1$ is equivalent to the hyponormality of T, while subnormality requires the validity of (1.1) for all k. Let $[A, B]:=A B-B A$ denote the commutator of two operators A and B, and define T to be k-hyponormal whenever the $k \times k$ operator matrix

$$
\begin{equation*}
M_{k}(T):=\left(\left[T^{* j}, T^{i}\right]\right)_{i, j=1}^{k} \tag{1.2}
\end{equation*}
$$

is positive.
We now review a few essential facts concerning weak subnormality that we will need to begin with. Note that the operator T is subnormal if and only if there exist operators A and B such that $\widehat{T}:=\left(\begin{array}{cc}T & A \\ 0 & B\end{array}\right)$ is normal, i.e.,

$$
\left\{\begin{array}{l}
{\left[T^{*}, T\right]:=T^{*} T-T T^{*}=A A^{*}} \tag{1.3}\\
A^{*} T=B A^{*} \\
{\left[B^{*}, B\right]+A^{*} A=0 .}
\end{array}\right.
$$

An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be weakly subnormal if there exist operators $A \in \mathcal{L}\left(\mathcal{H}^{\prime}, \mathcal{H}\right)$ and $B \in \mathcal{L}\left(\mathcal{H}^{\prime}\right)$ such that the first two conditions in (1.3) hold:

$$
\begin{equation*}
\left[T^{*}, T\right]=A A^{*} \quad \text { and } \quad A^{*} T=B A^{*} \tag{1.4}
\end{equation*}
$$

or equivalently, there is an extension \widehat{T} of T such that

$$
\widehat{T}^{*} \widehat{T} f=\widehat{T} \widehat{T}^{*} f \quad \text { for all } f \in \mathcal{H}
$$

The operator \widehat{T} is called a partially normal extension (briefly, p.n.e.) of T. We also say that \widehat{T} in $\mathcal{L}(\mathcal{K})$ is a minimal partially normal extension (briefly, m.p.n.e.) of T if \mathcal{K} has no proper subspace containing \mathcal{H} to which the restriction of \widehat{T} is also a partially normal extension of T. It is known ([6, Lemma 2.5 and Corollary 2.7]) that

$$
\widehat{T}=\text { m.p.n.e. }(T) \Longleftrightarrow \mathcal{K}=\bigvee\left\{\widehat{T}^{* n} h: h \in \mathcal{H}, n=0,1\right\}
$$

and the m.p.n.e. (T) is unique. For convenience, if $\widehat{T}=$ m.p.n.e. (T) is also weakly subnormal then we write $\widehat{T}^{(2)}:=\widehat{\widehat{T}}$ and more generally, $\widehat{T}^{(n)}:=\widehat{\widehat{T}^{(n-1)}}$. It was ([6], [5]) shown that
(1.5) \quad 2-hyponormal \Longrightarrow weakly subnormal \Longrightarrow hyponormal and the converses of both implications in (1.5) are not true in general. In particular, the following lemma is very useful in the sequel.

Lemma 1.1. ([6], [5]) Let $T \in \mathcal{L}(\mathcal{H})$.
(a) If T is weakly subnormal then the operator A in (1.4) can be taken as a positive operator;
(b) If T is weakly subnormal then $\operatorname{ker}\left[T^{*}, T\right]$ is invariant for T;
(c) For any $k \geq 1, T$ is $(k+1)$-hyponormal if and only if T is weakly subnormal and $\widehat{T}:=$ m.p.n.e. (T) is k-hyponormal.

The self-commutator of an operator plays an important role in the study of subnormality. Subnormal operators with finite rank self-commutators have been extensively studied ([2], [9], [11], [16], [17], [18], [20], [21]). Particular attention has been paid to hyponormal operators with rank 1 or rank 2 self-commutators ([7], [10], [12], [13], [14], [16], [19], [22]). In particular, B. Morrel [10] showed that a pure subnormal operator with rank 1 self-commutator (pure means having no normal summand) is unitarily equivalent to a linear function of the unilateral shift.

It is worth to noticing that in view of (1.5) and Lemma 1 (a), Morrel's theorem gives that every weakly subnormal operator with rank 1 selfcommutator is subnormal.

2. The main results

M. Putinar [15] gave a matricial model for the hyponormal operator $T \in \mathcal{L}(\mathcal{H})$ with finite rank self-commutator, in the cases where
$\mathcal{H}_{0}:=\bigvee_{k=0}^{\infty} T^{* k}\left(\operatorname{ran}\left[T^{*}, T\right]\right)$ has finite dimension $d \quad$ and $\quad \mathcal{H}=\bigvee_{n=0}^{\infty} T^{n} \mathcal{H}_{0}$.
Let $G_{n}:=\bigvee_{k=0}^{n} T^{k} \mathcal{H}_{0} \quad(n \geq 0)$ and $\mathcal{H}_{n}:=G_{n} \ominus G_{n-1} \quad(n \geq 1)$. If $\operatorname{dim}\left(\mathcal{H}_{n}\right)=\operatorname{dim}\left(\mathcal{H}_{n+1}\right)=d \quad(n \geq 0)$, then T has the following twodiagonal structure relative to the decomposition $\mathcal{H}=\mathcal{H}_{0} \oplus \mathcal{H}_{1} \oplus \cdots([15])$:

$$
T=\left(\begin{array}{ccccc}
B_{0} & 0 & 0 & 0 & \ldots \tag{2.1}\\
A_{0} & B_{1} & 0 & 0 & \cdots \\
0 & A_{1} & B_{2} & 0 & \ldots \\
0 & 0 & A_{2} & B_{3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right),
$$

where

$$
\left\{\begin{array}{l}
{\left[T^{*}, T\right]=\left(\left[B_{0}^{*}, B_{0}\right]+A_{0}^{*} A_{0}\right) \oplus 0_{\infty}} \tag{2.2}\\
{\left[B_{n+1}^{*}, B_{n+1}\right]+A_{n+1}^{*} A_{n+1}=A_{n} A_{n}^{*} \quad(n \geq 0)} \\
A_{n}^{*} B_{n+1}=B_{n} A_{n}^{*} \quad(n \geq 0)
\end{array}\right.
$$

We will refer the operator (2.1) to the Putinar's matricial model operator of rank d. This model was also introduced in [7], [12], [19], [20], and etc.

In [8], using the Agler's characterization of subnormality [1], the authors showed the following theorems:

Theorem 2.1. ([8]) Let $T \in \mathcal{L}(\mathcal{H})$. If
(i) T is a pure hyponormal operator;
(ii) $\left[T^{*}, T\right]$ is of rank 2 ; and
(iii) $\operatorname{ker}\left[T^{*}, T\right]$ is invariant for T,
then the following hold:

1. If $\left.T\right|_{k e r ~}\left[T^{*}, T\right]$ has the rank 1 self-commutator then T is subnormal;
2. If $\left.T\right|_{\text {ker }\left[T^{*}, T\right]}$ has the rank 2 self-commutator then T is either a subnormal operator or the Putinar's matricial model operator of rank 2.

Theorem 2.2. ([8]) The operator T in (2.1) is subnormal if B_{n} is normal for some $n \geq 0$.

Also, they conjectured that:
Conjecture 2.3. ([8]) The Putinar's matricial model operator of rank 2 is subnormal.

In this paper we examine the validity of the Conjecture 2.3 , and we provide some affirmative evidences for the Conjecture 2.3. If A_{0} and A_{1} in (2.1) commute, we then have :

Theorem 2.4. Let T be the Putinar's matricial model operator of rank 2. If A_{0} and A_{1} in (2.1) commute then T is either subnormal or is of the following form by a translation or a multiplication by an appropriate scalar: $A_{j}=\left(\begin{array}{cc}p_{j} & 0 \\ 0 & q_{j}\end{array}\right)$ and $B_{j}=\left(\begin{array}{cc}0 & b_{j} \\ c_{j} & 0\end{array}\right)$ for $j=0,1, \cdots$, that is,

$$
T=\left(\begin{array}{ccccc}
0 & b_{0} & 0 & 0 & \ldots \tag{2.3}\\
c_{0} & 0 & 0 & 0 & \ldots \\
p_{0} & 0 & 0 & b_{1} & \ldots \\
0 & q_{0} & c_{1} & 0 & \ldots \\
0 & 0 & p_{1} & 0 & \ldots \\
0 & 0 & 0 & q_{1} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Proof. Let

$$
T_{n}:=\left(\begin{array}{ccccc}
B_{n} & 0 & 0 & 0 & \cdots \\
A_{n} & B_{n+1} & 0 & 0 & \cdots \\
0 & A_{n+1} & B_{n+2} & 0 & \cdots \\
0 & 0 & A_{n+2} & B_{n+3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) \quad(n=0,1, \cdots) .
$$

By [8], we can see that T_{n} is the minimal partially normal extension of T_{n+1} for each $n \geq 0$. Thus, by Lemma 1.1 (a), we can assume that A_{n} is positive for each $n \geq 0$.
Since A_{0} and A_{1} are diagonalizable and A_{0} and A_{1} commute, we can see that A_{0} and A_{1} are simultaneously diagonalizable. So we can write

$$
A_{n}:=\left(\begin{array}{cc}
p_{n} & 0 \\
0 & q_{n}
\end{array}\right) \quad(n=0,1)
$$

Also write

$$
B_{n}:=\left(\begin{array}{ll}
a_{n} & b_{n} \\
c_{n} & d_{n}
\end{array}\right) \quad(n=0,1)
$$

By the third equality of (2.2), we have

$$
\left\{\begin{array}{l}
a_{0}=a_{1}=: a \\
d_{0}=d_{1}=: d \\
p_{0} b_{1}=b_{0} q_{0} \\
c_{0} p_{0}=q_{0} c_{1}
\end{array}\right.
$$

If $a=d$ then by a translation we have

$$
B_{n}=\left(\begin{array}{cc}
0 & b_{n} \\
c_{n} & 0
\end{array}\right) \quad(n=0,1)
$$

So by the third equality of (2.2), B_{2} is skew diagonal and in turn, by the second equality of (2.2), A_{2} is diagonal. Repeating this argument with a telescoping method shows that B_{n} is skew diagonal and A_{n} is diagonal for each $n=0,1, \cdots$. Thus T is of the form (2.3).

Now suppose $a \neq d$. By a translation and a multiplication by an appropriate scalar, write

$$
B_{n}:=\left(\begin{array}{cc}
a & b_{n} \\
c_{n} & 0
\end{array}\right) \quad(a \in \mathbb{R}, a \neq 0, n=0,1)
$$

By the second equality of (2.2),

$$
\left[B_{1}^{*}, B_{1}\right]=\left(\begin{array}{cc}
\left|c_{1}\right|^{2}-\left|b_{1}\right|^{2} & a b_{1}-a \overline{c_{1}} \\
a \overline{b_{1}}-a c_{1} & \left|b_{1}\right|^{2}-\left|c_{1}\right|^{2}
\end{array}\right)
$$

is diagonal, and hence $b_{1}=\overline{c_{1}}$. Thus B_{1} is normal. Therefore, by Theorem 2.2, T is subnormal.

We now give general sufficient conditions for the subnormality of T in (2.3).

Theorem 2.5. The operator T in (2.3) is subnormal if one of the following holds:
(i) $p_{n} \geq q_{n}$ (or $q_{n} \geq p_{n}$) for all $n=m, m+1, \cdots$;
(ii) $q_{n} \geq\left|c_{n}\right|$ and $p_{n} \geq\left|b_{n}\right|$ for some $n \geq 0$;
(iii) $\left|b_{n}\right|=\left|c_{n}\right|$ for some $n \geq 0$;
(iv) $p_{n}=q_{n}$ for some $n \geq 0$;
(v) $p_{n}=p_{n+1}$ (or $q_{n}=q_{n+1}$) for some $n \geq 0$;
(vi) $\left|b_{n}\right|=\left|b_{n+1}\right|$ (or $\left|c_{n}\right|=\left|c_{n+1}\right|$) for some $n \geq 0$.

Proof. First of all, observe that from the second and third equalities of (2.2),

$$
\left\{\begin{array}{l}
p_{n+1}^{2}=p_{n}^{2}+\left|b_{n+1}\right|^{2}-\left|c_{n+1}\right|^{2} \tag{2.4}\\
q_{n+1}^{2}=q_{n}^{2}-\left|b_{n+1}\right|^{2}+\left|c_{n+1}\right|^{2} \\
p_{n} b_{n+1}=b_{n} q_{n} ; \\
c_{n} p_{n}=q_{n} c_{n+1} .
\end{array}\right.
$$

(i) Without loss of generality we may assume $p_{n} \geq q_{n}$ for all $n=$ $0,1, \cdots$. Thus $\left\{\left|b_{n}\right|\right\}$ is decreasing and $\left\{\left|c_{n}\right|\right\}$ is increasing. By using the fourth recursive formula of (2.4) repeatedly, we have

$$
c_{n+1}=\left(\prod_{j=0}^{n} \frac{p_{j}}{q_{j}}\right) c_{0}
$$

Since $\frac{p_{j}}{q_{j}} \geq 1$ for each $j \geq 0$, the sequence $\left\{\left|c_{n}\right|\right\}$ should converge, so that $\sum_{j=0}^{\infty} \log \left(\frac{p_{j}}{q_{j}}\right)$ converges, and hence the sequence $\left\{\frac{p_{j}}{q_{j}}\right\}$ converges to 1 . Similarly, the sequence $\left\{\left|b_{n}\right|\right\}$ converges. Say $b:=\lim \left|b_{n}\right|$ and $c:=\lim \left|c_{n}\right|$. We now claim that $b=c$. Assume to the contrary that $c>b$ and let $\epsilon:=c^{2}-b^{2}>0$. Then there exists $N \in \mathbb{Z}_{+}$such that $\left|c_{n+1}\right|^{2}-\left|b_{n+1}\right|^{2} \geq \frac{\epsilon}{2}$ for all $n \geq N$. Then by the second equality of (2.4), if $n \geq N$ then

$$
q_{n+m}^{2} \geq q_{n}^{2}+\frac{\epsilon}{2} m \rightarrow \infty \text { as } m \rightarrow \infty
$$

which implies that the sequence $\left\{q_{n}\right\}$ is unbounded, a contradiction. If instead $b>c$ then again the sequence $\left\{p_{n}\right\}$ is unbounded, a contradiction. This proves $b=c$. Since $\left\{\left|b_{n}\right|\right\}$ is decreasing and $\left\{\left|c_{n}\right|\right\}$ is
increasing, we can see that

$$
\begin{equation*}
b_{n} \geq c_{n} \quad \text { for all } n \geq 0 \tag{2.5}
\end{equation*}
$$

Thus by (2.4) and (2.5) we can conclude that $\left\{p_{n}\right\}$ is increasing and $\left\{q_{n}\right\}$ is decreasing. So both $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ converge. But since $\frac{p_{n}}{q_{n}} \rightarrow 1$, we can say $p_{n} \rightarrow p$ and $q_{n} \rightarrow p$ for some $p>0$. So

$$
p_{0} \leq p_{1} \leq p_{2} \leq \cdots \leq p \leq \cdots \leq q_{2} \leq q_{1} \leq q_{0}
$$

But since $p_{0} \geq q_{0}$ it follows that $p_{n}=p=q_{n}$ for all $n \geq 0$. By (2.5), this also implies that $\left|b_{n}\right|=\left|c_{n}\right|$ for all $n \geq 0$. Therefore all the B_{n} are normal. By Theorem 2.2, we can conclude that T is subnormal.
(ii) Without loss of generality, we may assume that $q_{0} \geq\left|c_{0}\right|$ and $p_{0} \geq\left|b_{0}\right|$. If we put

$$
A_{-1}:=\left(\left[B_{0}^{*}, B_{0}\right]+A_{0}^{2}\right)^{\frac{1}{2}} \quad \text { and } \quad B_{-1}:=A_{-1} B_{0} A_{-1}^{-1}
$$

then $\widehat{T}:=\left(\begin{array}{cc}B_{-1} & 0 \\ A_{-1} & T\end{array}\right)=$ m.p.n.e. (T). So we need to show that

$$
\left[\widehat{T}^{*}, \widehat{T}\right]=\left(\left[B_{-1}^{*}, B_{-1}\right]+A_{-1}^{2}\right) \oplus 0_{\infty} \geq 0
$$

A straightforward calculation shows that

$$
A_{-1}=\left(\begin{array}{cc}
\left|c_{0}\right|^{2}-\left|b_{0}\right|^{2}+p_{0}^{2} & 0 \\
0 & \left|b_{0}\right|^{2}-\left|c_{0}\right|^{2}+q_{0}^{2}
\end{array}\right) \quad \text { and } \quad B_{-1}=\left(\begin{array}{cc}
0 & \frac{p_{-1}}{q_{-1}} b_{0} \\
\frac{q_{-1}}{p_{-1}} c_{0} & 0
\end{array}\right)
$$

where

$$
p_{-1}:=\left(\left|c_{0}\right|^{2}-\left|b_{0}\right|^{2}+p_{0}^{2}\right)^{\frac{1}{2}} \quad \text { and } \quad q_{-1}:=\left(\left|b_{0}\right|^{2}-\left|c_{0}\right|^{2}+q_{0}^{2}\right)^{\frac{1}{2}}
$$

So

$$
\begin{aligned}
& {\left[B_{-1}^{*}, B_{-1}\right]+A_{-1}^{2}} \\
& =\left(\begin{array}{cc}
\left(\frac{q_{-1}}{p_{-1}}\right)^{2}\left|c_{0}\right|^{2}-\left(\frac{p_{-1}}{q_{-1}}\right)^{2}\left|b_{0}\right|^{2}+p_{-1}^{2} & 0 \\
0 & \left(\frac{p_{-1}}{q_{-1}}\right)^{2}\left|b_{0}\right|^{2}-\left(\frac{q_{-1}}{p_{-1}}\right)^{2}\left|c_{0}\right|^{2}+q_{-1}^{2}
\end{array}\right)
\end{aligned}
$$

Observe that if $q_{0} \geq\left|c_{0}\right|$ then

$$
\begin{aligned}
& \left(\frac{q_{-1}}{p_{-1}}\right)^{2}\left|c_{0}\right|^{2}-\left(\frac{p_{-1}}{q_{-1}}\right)^{2}\left|b_{0}\right|^{2}+p_{-1}^{2} \\
& =\frac{1}{p_{-1}^{2} q_{-1}^{2}}\left(q_{-1}^{4}\left|c_{0}\right|^{2}-p_{-1}^{4}\left|b_{0}\right|^{2}+q_{-1}^{2} p_{-1}^{4}\right) \\
& =\frac{1}{p_{-1}^{2} q_{-1}^{2}}\left(q_{-1}^{4}\left|c_{0}\right|^{2}+p_{-1}^{4}\left(q_{0}^{2}-\left|c_{0}\right|^{2}\right)\right) \\
& \geq 0
\end{aligned}
$$

and similarly, if $p_{0} \geq\left|b_{0}\right|$ then

$$
\left(\frac{p_{-1}}{q_{-1}}\right)^{2}\left|b_{0}\right|^{2}-\left(\frac{q_{-1}}{p_{-1}}\right)^{2}\left|c_{0}\right|^{2}+q_{-1}^{2} \geq 0
$$

and therefore $\left[B_{-1}^{*}, B_{-1}\right]+A_{-1}^{2} \geq 0$. So T is 2 -hyponormal. But since if we put

$$
b_{-1}:=\frac{p_{-1}}{q_{-1}} b_{0} \quad \text { and } \quad c_{-1}:=\frac{q_{-1}}{p_{-1}} c_{0}
$$

then

$$
p_{-1}^{2}-\left|b_{-1}\right|^{2}=\frac{p_{-1}^{2}}{q_{-1}^{2}}\left(q_{-1}^{2}-\left|b_{0}\right|^{2}\right)=\frac{p_{-1}^{2}}{q_{-1}^{2}}\left(q_{0}^{2}-\left|c_{0}\right|^{2}\right) \geq 0
$$

and

$$
q_{-1}^{2}-\left|c_{-1}\right|^{2}=\frac{q_{-1}^{2}}{p_{-1}^{2}}\left(p_{-1}^{2}-\left|c_{0}\right|^{2}\right)=\frac{q_{-1}^{2}}{p_{-1}^{2}}\left(p_{0}^{2}-\left|b_{0}\right|^{2}\right) \geq 0,
$$

we can repeat the above argument. Thus T is k-hyponormal for every $k \in \mathbb{Z}_{+}$and hence T is subnormal.
(iii) Since $\left|b_{n}\right|=\left|c_{n}\right|$ for some $n \geq 0, B_{n}$ is normal. Thus, it follows from Theorem 2.2.
(iv) Without loss of generality, we may assume $p_{0}=q_{0}$. So we can write $A_{0}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and hence $B_{0}=B_{1}$ by the third equality of (2.2). Now if we define

$$
A_{-1}:=\left(\left[B_{0}^{*}, B_{0}\right]+A_{0}^{2}\right)^{\frac{1}{2}} \quad \text { and } \quad B_{-1}:=A_{-1} B_{0} A_{-1}^{-1},
$$

then $\widehat{T}:=\left(\begin{array}{ccc}B_{-1} & 0 \\ A_{-1} & T\end{array}\right)=$ m.p.n.e. (T). So we need to shows that

$$
\left[\widehat{T}^{*}, \widehat{T}\right]=\left(\left[B_{-1}^{*}, B_{-1}\right]+A_{-1}^{2}\right) \oplus 0_{\infty} \geq 0 .
$$

A straightforward calculation shows that

$$
A_{-1}=P^{-1} A_{1} P \quad \text { and } \quad B_{-1}=B_{2}
$$

where $P:=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. So

$$
\left[B_{-1}^{*}, B_{-1}\right]+A_{-1}^{2}=P^{-1} A_{2}^{2} P \geq 0
$$

Thus we see that T is 2 -hyponormal. Similarly, we can repeat this backward extension. Therefore we can conclude that T is subnormal.
(v) If $p_{n}=p_{n+1}$ (or $q_{n}=q_{n+1}$), then by the first (or second) equality of (2.4) we have $\left|b_{n+1}\right|=\left|c_{n+1}\right|$. Therefore the result follows from (iv).
(vi) If $\left|b_{n}\right|=\left|b_{n+1}\right| \neq 0$ (or $\left|c_{n}\right|=\left|c_{n+1}\right| \neq 0$), then by the third (or fourth) equality of (2.4) we have $p_{n}=q_{n}$. Therefore the result follows from (iii). If instead $\left|b_{n}\right|=\left|b_{n+1}\right|=0$ (or $\left|c_{n}\right|=\left|c_{n+1}\right|=0$), then
by the second (or first) equality of (2.4), we have $q_{n+1} \geq\left|c_{n+1}\right|$ (or $\left.p_{n+1} \geq\left|b_{n+1}\right|\right)$. Therefore the result follows from (ii).

We thus have :
Theorem 2.6. Let T be the Putinar's matricial model operator of rank 2. If the matrix B_{j} in (2.1) is of the form $B_{j}=\left(\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right)$ for some $a \in \mathbb{C}$ and for some $j \geq 0$ then T is subnormal.

Proof. Without loss of generality we can assume $j=0$. By Lemma 1.1 (a), we can also write $A_{0}=\left(\begin{array}{cc}p_{0} & 0 \\ 0 & q_{0}\end{array}\right)$. From the third equality of (2.2) we can see that B_{1} is of the form $B_{1}=\left(\begin{array}{cc}0 & b_{1} \\ 0 & 0\end{array}\right)$ for some $b_{1} \in \mathbb{C}$. Let $A_{1} \equiv\left(\begin{array}{ll}p_{1} & r_{1} \\ r_{1} \\ q_{1}\end{array}\right)$ be positive. Then by the second equality of (2.2), we have $r_{1}=0$. It thus follows that A_{1} is a diagonal matrix. Therefore T is subnormal by Theorem 2.4 and Theorem 2.5 (vi).

References

[1] J. Agler, Hypercontractions and subnormality, J. Operator Theory, 13 (1985), 203-217.
[2] A. Aleman, Subnormal operators with compact selfcommutator, Manuscripta Math. 91 (1996), 353-367.
[3] J. Bram, Subnormal operators, Duke Math. J. 22 (1955), 75-94.
[4] J. B. Conway, The Theory of Subnormal Operators, Math. Surveys and Monographs 36 (1991), Amer. Math. Soc. Providence
[5] R. E. Curto, I. B. Jung and S. S. Park, A characterization of k-hyponormality via weak subnormality, J. Math. Anal. Appl. 279 (2003), 556-568.
[6] R. E. Curto and W. Y. Lee, Towards a model theory for 2-hyponormal operators, Integral Equations Operator Theory 44 (2002), 290-315.
[7] B. Gustafsson and M. Putinar, Linear analysis of quadrature domains II, Israel J. Math. 119 (2000), 187-216.
[8] S. H. Lee and W. Y. Lee, Hyponormal operators with rank-two selfcommutators, J. Math. Anal. Appl. 351 (2009) 616-626.
[9] J. E. McCarthy and L. Yang, Subnormal operators and quadrature domains, Adv. Math. 127 (1997), 52-72.
[10] B. B. Morrel, A decomposition for some operators, Indiana Univ. Math. J. 23 (1973), 497-511.
[11] R. F. Olin, J. E. Thomson and T. T. Trent, Subnormal operators with finite rank self-commutator, preprint 1990.
[12] M. Putinar, Linear analysis of quadrature domains, Ark. Mat. 33 (1995), 357376.
[13] M. Putinar, Extremal solutions of the two-dimensional L-problem of moments, J. Funct. Anal. 136 (1996), 331-364.
[14] M. Putinar, Extremal solutions of the two-dimensional L-problem of moments II, J. Approximation Theory 92 (1998), 32-58.
[15] M. Putinar, Linear analysis of quadrature domains III, J. Math. Anal. Appl. 239 (1999), 101-117.
[16] S. A. Stewart and D. Xia, A class of subnormal operators with finite rank self-commutators, Integral Equations Operator Theory 44 (2002), 370-382.
[17] D. Xia, Analytic theory of subnormal operators, Integral Equations Operator Theory 10 (1987), 880-903.
[18] D. Xia, On pure subnormal operators with finite rank self-commutators and related operator tuples, Integral Equations Operator Theory 24 (1996), 107125.
[19] D. Xia, Hyponormal operators with rank one self-commutator and quadrature domains, Integral Equations Operator Theory 48 (2004), 115-135.
[20] D. Yakubovich, Subnormal operators of finite type. I, Rev. Mat. Iberoamericana, 14 (1998), 95-115.
[21] D. Yakubovich, Subnormal operators of finite type. II, Rev. Mat. Iberoamericana 14 (1998), 623-681.
[22] D. Yakubovich, A note on hyponormal operators associated with quadrature domains, Operator Theory: Advances and Applications 123, 513-525, Birkhaüser, Verlag-Basel, 2001.

Department of Mathematics Education
Sangmyung University
Seoul 110-743, Republic of Korea
E-mail: jilee@smu.ac.kr

[^0]: Received November 27, 2012; Accepted January 11, 2013.
 2010 Mathematics Subject Classification: Primary 47A20, 47B20.
 Key words and phrases: Putinar's matricial model operator, subnormal operators, weakly subnormal operators, finite rank selfcommutators.

 This research was supported by a 2012 Research Grant from Sangmyung University.

