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ON SOME SUBGROUPS OF D* WHICH SATISFY A
GENERALIZED GROUP IDENTITY

MAI HOANG BIEN

ABSTRACT. Let D be a division ring and w(z1,x2,...,Zm) be a gener-
alized group monomial over D*. In this paper, we investigate subnor-
mal subgroups and maximal subgroups of D* which satisfy the identity
w(z1,x2,...,&m) = 1.

1. Introduction

A group monomial is a non-trivial word

@
i1

ay

— a2
(1, T2,y Ty) = T T X

in the free (multiplicative) group F,, generated by indeterminates x1, xa, . .., T,
for some positive integer m. Let G be a group with center Z(G) = {a € G |
ab = ba for any b € G }. An element

— Q1 a2 e%
W(X1, oy ...y Ty) = a1yt agxy? - aprytagy

of the free product G * F,,, of G and F,,, for some positive integer m is called
a generalized group monomial over G if, for any j = 1,2,...,t — 1, whenever
ij = ;41 and ojajr1 < 0, one has ajy1 ¢ Z(G) (see [17]). The integer
a(w) = |ag|+|az|+- - -+]|a:] is called the length of w. Let H be a subgroup of G.

If w(er, co, ... em) =1 (vesp. ulcy,ca,...,cm) =1) for any c¢1,¢2,...,¢m € H,
then we say that H satisfies w(x1,x2,...,&m) =1 (resp. u(x1,22,...,Tm) =1)
or that w(x1,x9,...,2m) = 1 (resp. wu(x1,x2,...,2,m) = 1) is a generalized

group identity (resp. group identity) of H.

Generalized group identities are a good technique to “link” a group and its
subgroups. We use this nice technique to investigate some classes of subgroups
of the multiplicative group of a division ring.

We recall briefly some known results on division rings whose multiplicative
groups satisfy a group identity and, more generally, a generalized group identity.
Let D be a division ring with center F. The first result comes from Amitsur.
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In 1966, he showed in [2] that if F' is infinite and D* = D\{0} satisfies a group
identity, then D = F. In 1982, Golubchik and Mikhalev proved that if F' is
infinite and D* satisfies a generalized group identity over D*, then D = F
(see [9]). In the proofs of these results, the condition “F is infinite” is really
essential. In 2004, in their paper [5], Chebotar and Lee considered the case
when F is finite and showed that if F' contains sufficiently many elements, then
Amitsur’s result still holds. In fact, they showed that if the cardinality of F
is greater than w, then D = F. Recently, there are some articles on some
subgroups of D* which satisfy a group identity or some special group identity
(see [7, 10, 12, 14]): Ramezan-Nassab and Kiani proved in [14] that subnormal
subgroups of D* satisfying the n-Engel condition are contained in F. It is
proved in [12] that every maximal subgroup of D* satisfying a group identity
is the multiplicative group of a maximal subfield of D if F[M] # D and F[M]
is algebraic over F'. Here, F'[M] is the subring of D generated by M and F.

The goal of this paper is to investigate subnormal or maximal subgroups of
D* satisfying a generalized group identity in case when F’ contains sufficiently
many elements. In Section 2, we generalize two classical results [9, Theorem
2] and [5, Theorem 4]. In Section 3, we study subnormal subgroups of D*
satisfying a generalized group identity, and then two interesting corollaries are
presented as well. In Section 4, we focus our attention on maximal subgroups
of D* satisfying a generalized group identity.

2. Division rings satisfying a generalized group identity

In this section, we prove that for a division ring D whose multiplicative group
D* satisfies a generalized group identity over D*| if the center of D contains
sufficiently many elements, then D is commutative. This is an extension of
both [9, Theorem 2] and [5, Theorem 4].

We first recall notation used in this paper. For a set S, the notation |S]
denotes the cardinality of S. For any division ring D with center F' and an
indeterminate x, we denote by D((x)) the division ring of Laurent series. Hence,
F((x)) is the center of D((z)) [13, Proposition 14.2]. Denote by D(x) the
division subring of D((x)) generated by D and x. Assume that y1,y2,...,yn are
n > 1 indeterminates, by F(y1,ya,...,yn) the free F-algebra on y1,y9,...,Yn
and by D[[y1,y2,.-.,yn]] the universal division ring of fractions of the free
product of D and F{y1,ya,...,yn) over F. An element of a group G is called
central if it is in the center Z(G) of G. Otherwise, it is called non-central.

Lemma 2.1. Let D be a division ring, x an indeterminate and D(x) as above.
For any a,a1,a2,b € D, there exist c,d € D such that

(14 az)ai (1 + bz) tay = aras(1 + cx) ™' (1 + dx).
Proof. We leave the proof for readers with
¢ = (a3 bay — a5 tay taayaz)ay thas(ay tbay — ay tay taayas) !

-1 -1 -1 -1 -1 -1 -1, -1 -
and d = (a3 "bag — ay "aj ‘aaiaz)ay ‘aj ‘aaiaz(ay bas — ay tay taaaz)”t. O
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Lemma 2.2. Let F be a field, R a ring with center Z(R) = F and p(z) =
VL™ + V12" L4+ @ polynomial over R with n > 0 and v, # 0. Then
p(z) has at most n roots in F.

Proof. This lemma is a corollary of [15, Proposition 2.3.27]. Assume that

p(x) = 0 has n + 1 roots in F, namely co,ci,...,c,, which are distinct in
F. By [15, Proposition 2.3.27], |co,c1,- .., Cn|lvn, = 0 where |co,c1,...,cp| is
the Vandermonde determinant of ¢, cy,...,¢,. By [15, Proposition 2.3.26],
|Co,01,...,cn| = H0§i<j§n(ci — Cj) 75 0. Thus, H0§i<j§n(ci — Cj)’Un = 0.
Therefore,

vn = (Mo<icj<n(ci — ¢;))  Mo<icj<n(ci — ¢j)vn = 0.

Contradiction! O
Lemma 2.3. Let D be a division ring with center F' and w(x1,2Za,...,Tm) @
generalized group monomial over D*. Denote by D(x) the division ring as in
Lemma 2.2 for some indeterminate x. For any m elements ui,us, ..., Uy €

D*, put f(x) = w(l +wix,1 +usx, ..., 1+ unx), an element of D(x). Then,
if |F| > a(w) + m and D* satisfies the identity w(x1,x2,...,2m) = 1, then
flz)=1.

Proof. Assume that w(z1,22,...,%m) = a12; agxf; atx tar4q and f(xz) =

w(l +uix, 1 + usx,...,1 + umx) # 1. Then by Lemma 2. 1 f(z) has a form
bg1(x)~1tga(z) where g1(x) and go(x) are polynomial of degree < a(w). Put
S ={ce€ F|l+we # 0,i =1,2,...,m}. Now the cardinality of S is
greater than a(w) and f(c) = bg; (c gg( =w(l+uie, 1 +uge,...,unmc) = 1.
Therefore, the polynomial go(z) = g1(x)b~! has at least a(w) + 1 roots in F.
This contrasts with Lemma 2.2 since ga(x) # g1(z)b~t. Thus, f(z)=1. O

) )

1
H

Lemma 2.4. Let D be a division ring with center F and w(xy,x2,...,%Tm)
a generalized group monomial over D*. If F is infinite and D* satisfies the
identity w(x1,22,...,Zm) =1, then D = F.

Proof. This lemma is from [9, Theorem 2]. O

Proposition 2.5. Let D be a division ring with center F' and w(x1,xa, ..., Tm)
a generalized group monomial over D*. Then if |F| > a(w)+m and D* satisfies
the identity w(zy1,x2,...,&m) =1, then D = F.

Proof. We assume that w(z1,22,...,Tm) = a123 agx]) - - apwyayr. If the
center F' is infinite, then D is commutative by Lemma 2.4. Suppose that F is
finite. Let z,y1,y2...,ym be m+ 1 indeterminates. Consider the division ring
K = Dl[ly1,y2,---,Ym]]((z)) and the division subring H = D((z)) of K. It is
easy to see that F'((x)) is infinite, so that, by Lemma 2.4, H does not satisfy
w(x1,X2,...,Tm) = 1. That means, there exist uy,us, ..., un € H such that
w(uy, Uz, ..., un) # 1. Hence, w1 (y1, 92, ym) = w(l + y12,1 + yaw,..., 1+
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Yma) is an expression which does not coincide with 1 identically. Observe that
(or see [15, Remark 8.2.10]) in the division ring K, for any 1 < i < m,

(I+yw) =1+ (—y)'a’.
§=0
One has, w1(y1,y2,---,Ym) = w(l + 12,1 + yaz, ..., 1 + yx) has a form

o0
=14+> filyr v, ym)a’.

j=1
Where f;(y1,Y2,---,Ym), j > 1, are generalized polynomials over D in the inde-
terminates y1, Y2, . . ., Ym. Notice that there is some jo such that fj,(y1,y2,...,
Ym) Z 0 since w1(y1,¥y2,...,Ym) Z 1. We claim that fj, (y1,y2,...,¥m) is a
generalized polynomial identity of D. Since the cardinality of F' is greater
than a(w) + m and by Lemma 2.3, one has wj(u1,ug,...,u,) = 1 for any
UL, U2, - ., Uy, € D. It implies fj, (w1, u2, ..., uy) =0 for any uy, ug, ..., Uy €
D. Therefore, fi,(y1,Y2,---,Ym) is a generalized polynomial identity of D. By
[3, Theorem 6.1.9], D is finite-dimensional over F' and hence D is a (finite)
commutative field. O

The following result is an extension of both [9, Theorem 2] and [5, Theorem

4].

Theorem 2.6. Let D be a division ring with center F and w(x1, X2, ..., Tm) =
a1zt agxy? - aprytagy1 be a generalized group monomial over D*. If |F| >
min{ 2t + m, a(w) + m } and D* satisfies the identity w(x1, T2, ..., Tm) = 1,

then D = F'.

Proof. By Proposition 2.5 , it suffices to prove that if the cardinality of F is
greater than 2t + m, then D = F. Assume that D # F'. We substitute yibyi_1
for x;, 1 =1,2,...,m, in w(x1,x2,...,%m), and b & F. Then

w1 (ylvaa .o aym) = w(ylbyl_la beyglv ey ymby;ﬁ)
= a1y, by, agyi, b2y tag -y, 070y e
One has w1 (y1,92,-..,Ym) = 1 is a generalized group identity of D* and

a(wy) = 2t. Applying again Proposition 2.5, we have D = F. Contradic-
tion! O

3. Subnormal subgroups of D* satisfying a generalized group
identity

In this section, we show that every subnormal subgroup of D* with center
F which satisfies a generalized group identity is contained in F' if F' contains
sufficiently many elements. Two interesting corollaries will be proved then.
We first prove some basic lemmas on generalized group monomials over an
arbitrary group G.
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Lemma 3.1. Let w(x1,x2,...,Tm) be a generalized group monimial over a
group G. Then there exists a generalized group monomial
w1 (21, T2y vy T) = blellngfj e atxﬁtbtﬂ

over G such that two following conditions hold.

(1) For any 1< j <t—1, whenever i; =ij+1, one has bjy1 ¢ Z(G).

(2) w(cr,cay. .. 0m) =wi(er,ca,. .., cm) for any ci,c2,...,cm € G.
(3) a(w) = a(w).
Proof. Assume that w(z1, 22, ..., Tm) = @127 a2x; - - - a5 az1, where o €

Z\{0}, i; € {1,2,...,m} and a; € G such that for any j = 1,2,...,¢t — 1,
whenever i; = ;41 and ojaj+1 < 0, one has aj41 ¢ Z(G). Without loss of
generality, we suppose that only as € Z(G). Then i; # i3 or ayae > 0. If
i1 # ig, then put

_ 1,002 ag
w1($17$27 e 7:Cm) = Q102%; "T; a3 AT, Q41

If 11 = i3 and ajas > 0, then put

a]ta «
wy (21, T2y .oy T) = aragxy T az - apr agy.
In both cases, we have w(cy, co, ..., cm) = wi(c1, ca,. .., Cm) for any ¢1,co, .. .,
¢m € G and wy(x1, 22, ..., xy) satisfies (1) and (3). O

Assume a is a non-central element of a group G and y is an indeterminate.

Put
uo(y) =y, we(y) = ue—1(y)ave—1(y) ™"
for any £ > 1. Tt is clear that uy(y) is a generalized group monomial over G

and the length a(u,(y)) = 2¢ for £ > 0.

Lemma 3.2. Let w(x1,%2,...,Tm) = 177 a22]; ~~~atxioi‘at+1 be a gener-
alized group monomial over G such that for 1 < j < t — 1, whenever i; =
ij+1, one has aj+1 ¢ Z(G). Let y1,Y2,...,Ym be m indeterminates. Then

w (Y1, Y2, -« s Ym) = wl(ue(yr), ue(y2), ..., ue(ym)) is also a generalized group
monomial over G for any £ > 1.

Proof. There is nothing to do if £ = 0. Assume that ¢ > 0. We have uj =
we—1(y)a®ue—_1(y)~! and, therefore,

W' (Y1,Y25 -5 Ym) = wug(yr), ue(ya), - - - we(ym))

ap |, —1 Qasz |

— -1 e} -1
=a1Y,a--Q .yil a2 Yi, 4" Q ylZ as---ayy;,a---a t...yit Att1-

we(Yiq) ue (Yiy) e (Yiy)
Since a is non-central, it is easy to check that the inside of all N satisfies
we(yiy)
conditions of the definition of generalized group monomials. Now for any 0 <
j < t,if i; = i;41, then by the hypothesis of w(z1,x2,...,2m), a; ¢ Z(G).
Thus, w'(y1,Y2, ..., Ym) is a generalized group monomial over G. (I
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A subgroup H of a group G is called an r-subnormal subgroup of G for some
positive integer r if there exist r subgroups N1, Na, ..., N, of G such that

N=N,<N,_1<4---aNyg=G.
Theorem 3.3. Let D be a division ring with center F', N be an r-subnormal
subgroup of D* and w(x1,w2,...,Tp) = a12] azxy} - - - atzz‘aHl be a general-
ized group monomial over D*. Then if N satisfies the identity w(x1, Za,. .., Tm)

=1 and |F| > 2"t + m, then N is contained in F.

Proof. If r =0, i.e., N = D*, then by Theorem 2.6, N = D = F. Assume that
r > 1 and N is not contained in F. By Lemma 3.1, we assume that
W(X1, Tay ..., Ty) = ale‘ll agxf‘; . -atxitatﬂ

which satisfies the condition whenever i; = ¢;41, one has bj11 ¢ F for any
1< j7<m-—1. Since N is r-subnormal in D*, there exist a positive integer r
and subgroups Ny, No, ..., N, of D* such that

N =N,<adN,_1<d---<aN1 <Ny = D*.

Fix a non-central element a in N. Let ug(y) = y, ue(y) = we—1(y)aue—1(y)
for any £ = 1,2,...,r as in Lemma 2.4. Observe that us(b) € Ny for any b in
D* and £ =1,2,...,r, so that, by Lemma 2.4,

-1

w/(ylvy% s 7ym) = w(ur(yl)vur(y2)7 ce 7ur(ym)) =1
is a generalized group identity of D*. Since |F| > 2"t +m = a(w’) +m and by
Lemma 2.6, D = F. Thus, N C F. Contradiction! (|

Recall that for a division ring D with center F', an element x of D is called
algebraic over F if x is a root of a non-zero polynomial over F. A subset S of D
is called algebraic over F' if every element of S is algebraic over F'. Notice that
for an algebraic element = of D* over F, we have that z=! belongs to € F[z],
the subring of D generated by = and F. It implies that every subring H of D
which contains F' and is algebraic over F' is a division subring of D. This fact
will be used several times in this paper.

Proposition 3.4. Let D be a division ring with center F and w(x1,xa, ..., Tm)
be a generalized group monomial over D*. Assume that N is a subnormal
subgroup of D* such that N is algebraic over F. If N satisfies the identity
w(Z1, X2, . .., Tm) =1, then it is contained in F.

Proof. If F' is infinite, then, by Theorem 3.3, N is contained in F. Assume
that F' is finite. Then for any 2 € N, the subring F[z] of D generated by z
and F is a finite division ring. Hence, x is torsion. Now by [11, Theorem 8],
one has N C F. O

To prove next interesting result, we need a basic lemma.

Lemma 3.5. Let G be a group and N be a subnormal subgroup of G. For any
subgroup H of G, the subgroup H NN is subnormal subgroup of H.
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Proof. Assume that N = N, < N,_1<---<a4 Ny =G. Put M; = HN N; for any
i=0,1,...,r. It iseasytocheck NN H =M, <M,_1<---<1<My=H. [

Let D be a division ring with center F' and N be a subnormal subgroup of
D*. Goncalves and Mandel showed that if there exists a positive integer n such
that 2™ € F', then N is contained in F' [10, Theorem 5.2], which answer partially
the Herstein Conjecture [11, Conjecture 3]. Here, we prove the following result.

Proposition 3.6. Let D be a division ring with center I and N be a subnormal
subgroup of D*. Assume that K is a subfield of D. If there exists a positive
integer n such that ™ € K for any x € N, then N 1is contained in F'.

Proof. Since K is a field, N satisfies the identity z"y"z "y~ " = 1. If F is
infinite, then N is contained in F by Proposition 3.3. Now we consider the
case when F' is finite. Without loss of generality, assume that K is a maximal
subfield of D. We claim that N C K. Suppose that N € K. Then there exists
a € N such that a ¢ K and a™ € K. Put L = Cp(a™) ={z € D | a"z = za"},
the centralizer of a™ in D. Observe that L is a division subring of D whose
center Z(L) contains F'(a™) and that K is contained in L. There are two cases:

Case 1. a" is not algebraic over F. Then, the field F(a™) is infinite. Put
Ny = NN L. One has N; is a subnormal subgroup of L* (Lemma 3.5) and
satisfies the identity x"y"x~ "y~ ™ = 1. By Proposition 3.4, Ny C Z(L). Notice
that K is a maximal subfield of L since K is a maximal subfield of D. Hence,
a € Ny C Z(L) C K. Contradiction!

Case 2. a" is algebraic over F. Since F' is finite, so is F(a™). It implies
that a is torsion. By [4, Proposition 2.2], there exists a division subring D
of D such that D; is algebraic over Z(D;) and a € D1\Z(D1). Therefore,
N; = DiNN is a subnormal subgroup of D; (Lemma 3.5) and N; also satisfies
the identity z"y"z "y ™ = 1. By Lemma 3.4, Ny C Z(D;). In particular,
a € Z(D;). Contradiction!

Thus the claim is proved. It means that N C K, which implies N C F' by
(16, 14.4.4]. O

4. Maximal subgroups of D* satisfying a generalized group identity

In this section, we focus on maximal subgroups of D* which satisfying a
generalized group identity. The following lemmas are basic.

Lemma 4.1. Let D be a division ring and M a mazimal subgroup of D*. Then
either F(M) = D or M U {0} is a division subring of D, where F(M) is the
division subring of D generated by F and M.

Proof. We have M C F(M)*. Hence either F(M) = D or M = F(M)*. If
F(M) # D, then M U{0} = F(M), a division subring of D. O

Let G be a (multiplicative) group. The subgroup [G, G] of G generated by all
commutators xyxz~ly~!, where x,y range over G, is called the derived subgroup
of G.
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Lemma 4.2. Let G be a group with center Z(G). If M is a mazimal subgroup
of G, then either M contains Z(G) or M contains the derived subgroup [G,G]
of G.

Proof. Assume that M does not contain Z(G). Then by the maximality of M
in G, G=Z(G)M. One has [G,G] = [Z(G)M, Z(G)M] C M. O

Theorem 4.3. Let D be a division ring with center F'. Assume that M is a
mazimal subgroup of D* which satisfies w(x1,xa, ..., Tm)= 1 withw(xy, xa, ...,
L) = alzf‘ll ang‘; . ~at:czt ar11 a generalized group monomial over M. Then,
if |[F| >2t+m and F(M) # D, then M is abelian.

Proof. By Lemma 4.2, either M contains the derived subgroup [D*, D*] of D*
or M contains F*. If the derived subgroup [D*, D*] C M, then [D*, D*] satis-
fies the identity w(x1,x2,...,&m) = 1. By Theorem 3.3, D = F, which implies
M is abelian. Now we assume that M contains F*. Then, by Lemma 4.1,
L = M U {0} is a division subring of D. Hence L* = M satisfies the identity
w(Z1,Xa2,...,Tm) = 1. Since the center K of L contains F, the cardinality of
K is greater than 2¢ + m. By Theorem 2.6, M is abelian. (]

Remark 4.4. The condition “F (M) # D” is essential in Theorem 4.3 because
there are examples of division rings D whose multiplicative groups D* contain
maximal subgroups M such that M satisfies a (generalized) group identity
and is not abelian. For example, consider H = C1 & Cj, the Hamilton real
quaternion. By [1, Theorem 1], H* contains a maximal subgroup M = C* U
C*j which is not abelian but M satisfies a group identity since M is solvable
(|[M/C*| = 2 and C* is abelian).

A division ring D with center F' is called a division F'-algebra or a centrally
finite division ring if D is a finite-dimensional vector space over F' [13, Definition
14.1]. In this case, dimp D = (dimp K)? where K is a maximal subfield of D,
and dimp K is called the degree of D. Two following results extend partially
of [12, Theorem 4.1] and [1, Theorem 4] for a division ring.

Proposition 4.5. Let D be a division ring with center F'. Assume that M is
a mazximal subgroup of D* such that F[M], the subring of D generated by M
and F, is algebraic over F and F[M] # D. Then, if M satisfies a generalized
group identity w(xy,Ta,...,2m) = 1 over M, then D is centrally finite, and M
is the multiplicative group of a mazimal subfield K of D and there is no field
FSLGK.

Proof. We have F[M] is a division subring of D which contains F. If F is
infinite, then by Theorem 4.3, M is abelian. If F' is finite, then F[M] is a divi-
sion ring which algebraic over the finite field F'. Hence, by Jacobson’s Theorem
F[M] is commutative [13, Theorem 13.11]. In both cases, M is abelian. In par-
ticular, F[M] is a PI-ring, so that D is centrally finite by [12, Theorem 3.5], and
M is the multiplicative group of the maximal subfield K = F[M] of D. For the
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last statement, assume that there exists a subfield L of K such that ¥ G L G K.
By [13, Theorem 15.4], 1 < dim¢, () D = dimp L < n = dimg D, where n is
the degree of D. Therefore, M G Cp(D)* & D*, which contradicts with the
hypothesis. (]

Proposition 4.6. Let D be a division ring with center F. Assume that M
is a mazximal subgroup of D* such that M\F contains an algebraic element
over F'and F(M) # D. Let w(x1,22,...,Tm) = @127 agxy” -+ - a3 a1 be a
generalized group monomial over M. Then, if M satisfies w(x1, X2, ..., Tm) =
1 and |F| > 2t+m, then D is centrally finite and M is the multiplicative group
of a maximal subfield K of D and there is no field F ; L ; K.

Proof. By Theorem 4.3, M is abelian, which implies that M = F[M] is a sub-
field of D. Let 2 € M\F be an algebraic element of F'. Then 1 < dimp F(x) =
dimey, (p(a)) D < oo by [13, Theorem 15.4]. Since M C Cp(F(x))* and the
maximality of M, Cp(F(xz)) = M U {0}. By [1, Lemma 6], D is centrally
finite. Now using the same argument in the proof of Proposition 4.5, the last
statement is proved. (I

Remarks 4.7. The description of the maximal subgroups in Propositions 4.5
and 4.6 is the best one we know because non-commutative division rings whose
multiplicative groups contain abelian maximal subgroups are unknown [1, Con-
jecture C]. More generally, non-commutative division rings D with center F
which satisfy following properties:

(1) char(F) = p, where p is a prime number,

(2) D is centrally finite of degree p,

(3) and, D contains a maximal subfield K such that K* is a maximal

subgroup of D* and 2P € F for each x € K

are unknown.

In [6, Theorem 2.10] (or see [8]), it is proved that if D* contains a maximal
subgroup M such that M/(M N F) is locally finite, then D satisfies three
properties in Remark 4.7. Here, a group G is called locally finite if every
finitely generated subgroup of G is finite. We end this paper with an analogue
on maximal subgroups whose elements are periodic module F of bounded order.

Proposition 4.8. Let D be a division ring with center F'. Assume that M is a
mazimal subgroup of D* such that F(M) # D. Then, if there exists a positive
integer n such that ™ € F for any x € M, then

(1) char(F) = p, where p is a prime number.
(2) D is centrally finite of degree p.
(3) K =M U{0} is a mazimal subfield of D and xP € F for each x € K.

Proof. We claim that K = MU{0} is a maximal subfield of D and D is centrally
finite. Indeed, by Lemma 4.2, either M contains the derived subgroup [D*, D*]
of D* or M contains F*. If the derived subgroup [D*, D*] C M, then a™ € F



1362 MAI HOANG BIEN

for any a € [D*, D*]. By Proposition 3.6 and [13, Corollary 13.16], D = F,
which contradicts with the hypothesis. Therefore, M contains F*. Then, by
Lemma 4.1, K is a division subring of D. Notice that K* = M satisfies the

—MN,,—N

identity x™y"z~ "y~ = 1, so that by Proposition 4.5, K is a maximal subfield
of D and D is centrally finite. The claim is proved.

By [13, Proposition 15.13], we have char(F) = p and either a? € F for
any x € K or K is algebraic over Fj, the finite field of p elements. If F is
algebraic over F),, then so is D. By Jacobson’s Theorem [13, Thereom 13.11],
D is commutative, which contradicts with the hypothesis. Thus, a? € F for
any a € K and hence dimp K = p. The proposition is proved completely. [
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