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ON SOME SUBGROUPS OF D
∗ WHICH SATISFY A

GENERALIZED GROUP IDENTITY

Mai Hoang Bien

Abstract. Let D be a division ring and w(x1, x2, . . . , xm) be a gener-
alized group monomial over D∗. In this paper, we investigate subnor-
mal subgroups and maximal subgroups of D∗ which satisfy the identity
w(x1, x2, . . . , xm) = 1.

1. Introduction

A group monomial is a non-trivial word

u(x1, x2, . . . , xm) = xα1

i1
xα2

i2
· · ·xαt

it

in the free (multiplicative) group Fm generated by indeterminates x1, x2, . . . , xm

for some positive integer m. Let G be a group with center Z(G) = {a ∈ G |
ab = ba for any b ∈ G }. An element

w(x1, x2, . . . , xm) = a1x
α1

i1
a2x

α2

i2
· · · atx

αt

it
at+1

of the free product G ∗ Fm of G and Fm for some positive integer m is called
a generalized group monomial over G if, for any j = 1, 2, . . . , t − 1, whenever
ij = ij+1 and αjαj+1 < 0, one has aj+1 /∈ Z(G) (see [17]). The integer
α(w) = |α1|+|α2|+· · ·+|αt| is called the length of w. LetH be a subgroup of G.
If w(c1, c2, . . . , cm) = 1 (resp. u(c1, c2, . . . , cm) = 1) for any c1, c2, . . . , cm ∈ H ,
then we say thatH satisfies w(x1, x2, . . . , xm) = 1 (resp. u(x1, x2, . . . , xm) = 1)
or that w(x1, x2, . . . , xm) = 1 (resp. u(x1, x2, . . . , xm) = 1) is a generalized

group identity (resp. group identity) of H .
Generalized group identities are a good technique to “link” a group and its

subgroups. We use this nice technique to investigate some classes of subgroups
of the multiplicative group of a division ring.

We recall briefly some known results on division rings whose multiplicative
groups satisfy a group identity and, more generally, a generalized group identity.
Let D be a division ring with center F . The first result comes from Amitsur.
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In 1966, he showed in [2] that if F is infinite and D∗ = D\{0} satisfies a group
identity, then D = F . In 1982, Golubchik and Mikhalev proved that if F is
infinite and D∗ satisfies a generalized group identity over D∗, then D = F
(see [9]). In the proofs of these results, the condition “F is infinite” is really
essential. In 2004, in their paper [5], Chebotar and Lee considered the case
when F is finite and showed that if F contains sufficiently many elements, then
Amitsur’s result still holds. In fact, they showed that if the cardinality of F

is greater than 3α(w)
2 , then D = F . Recently, there are some articles on some

subgroups of D∗ which satisfy a group identity or some special group identity
(see [7, 10, 12, 14]): Ramezan-Nassab and Kiani proved in [14] that subnormal
subgroups of D∗ satisfying the n-Engel condition are contained in F . It is
proved in [12] that every maximal subgroup of D∗ satisfying a group identity
is the multiplicative group of a maximal subfield of D if F [M ] 6= D and F [M ]
is algebraic over F . Here, F [M ] is the subring of D generated by M and F .

The goal of this paper is to investigate subnormal or maximal subgroups of
D∗ satisfying a generalized group identity in case when F contains sufficiently
many elements. In Section 2, we generalize two classical results [9, Theorem
2] and [5, Theorem 4]. In Section 3, we study subnormal subgroups of D∗

satisfying a generalized group identity, and then two interesting corollaries are
presented as well. In Section 4, we focus our attention on maximal subgroups
of D∗ satisfying a generalized group identity.

2. Division rings satisfying a generalized group identity

In this section, we prove that for a division ringD whose multiplicative group
D∗ satisfies a generalized group identity over D∗, if the center of D contains
sufficiently many elements, then D is commutative. This is an extension of
both [9, Theorem 2] and [5, Theorem 4].

We first recall notation used in this paper. For a set S, the notation |S|
denotes the cardinality of S. For any division ring D with center F and an
indeterminate x, we denote byD((x)) the division ring of Laurent series. Hence,
F ((x)) is the center of D((x)) [13, Proposition 14.2]. Denote by D(x) the
division subring ofD((x)) generated byD and x. Assume that y1, y2, . . . , yn are
n ≥ 1 indeterminates, by F 〈y1, y2, . . . , yn〉 the free F -algebra on y1, y2, . . . , yn
and by D[[y1, y2, . . . , yn]] the universal division ring of fractions of the free
product of D and F 〈y1, y2, . . . , yn〉 over F . An element of a group G is called
central if it is in the center Z(G) of G. Otherwise, it is called non-central.

Lemma 2.1. Let D be a division ring, x an indeterminate and D(x) as above.
For any a, a1, a2, b ∈ D, there exist c, d ∈ D such that

(1 + ax)a1(1 + bx)−1a2 = a1a2(1 + cx)−1(1 + dx).

Proof. We leave the proof for readers with

c = (a−1
2 ba2 − a−1

2 a−1
1 aa1a2)a

−1
2 ba2(a

−1
2 ba2 − a−1

2 a−1
1 aa1a2)

−1

and d = (a−1
2 ba2 − a−1

2 a−1
1 aa1a2)a

−1
2 a−1

1 aa1a2(a
−1
2 ba2 − a−1

2 a−1
1 aa1a2)

−1. �
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Lemma 2.2. Let F be a field, R a ring with center Z(R) = F and p(x) =
vnx

n + vn−1x
n−1 + · · ·+ v0 a polynomial over R with n ≥ 0 and vn 6= 0. Then

p(x) has at most n roots in F .

Proof. This lemma is a corollary of [15, Proposition 2.3.27]. Assume that
p(x) = 0 has n + 1 roots in F , namely c0, c1, . . . , cn, which are distinct in
F . By [15, Proposition 2.3.27], |c0, c1, . . . , cn|vn = 0 where |c0, c1, . . . , cn| is
the Vandermonde determinant of c0, c1, . . . , cn. By [15, Proposition 2.3.26],
|c0, c1, . . . , cn| = Π0≤i<j≤n(ci − cj) 6= 0. Thus, Π0≤i<j≤n(ci − cj)vn = 0.
Therefore,

vn = (Π0≤i<j≤n(ci − cj))
−1Π0≤i<j≤n(ci − cj)vn = 0.

Contradiction! �

Lemma 2.3. Let D be a division ring with center F and w(x1, x2, . . . , xm) a

generalized group monomial over D∗. Denote by D(x) the division ring as in

Lemma 2.2 for some indeterminate x. For any m elements u1, u2, . . . , um ∈
D∗, put f(x) = w(1 + u1x, 1 + u2x, . . . , 1 + umx), an element of D(x). Then,

if |F | > α(w) + m and D∗ satisfies the identity w(x1, x2, . . . , xm) = 1, then

f(x) ≡ 1.

Proof. Assume that w(x1, x2, . . . , xm) = a1x
α1

i1
a2x

α2

i2
· · · atx

αt

it
at+1 and f(x) =

w(1 + u1x, 1 + u2x, . . . , 1 + umx) 6≡ 1. Then by Lemma 2.1, f(x) has a form
bg1(x)

−1g2(x) where g1(x) and g2(x) are polynomial of degree ≤ α(w). Put
S = { c ∈ F | 1 + uic 6= 0, i = 1, 2, . . . ,m }. Now the cardinality of S is
greater than α(w) and f(c) = bg−1

1 (c)g2(c) = w(1 + u1c, 1+ u2c, . . . , umc) = 1.
Therefore, the polynomial g2(x) = g1(x)b

−1 has at least α(w) + 1 roots in F .
This contrasts with Lemma 2.2 since g2(x) 6≡ g1(x)b

−1. Thus, f(x) ≡ 1. �

Lemma 2.4. Let D be a division ring with center F and w(x1, x2, . . . , xm)
a generalized group monomial over D∗. If F is infinite and D∗ satisfies the

identity w(x1, x2, . . . , xm) = 1, then D = F .

Proof. This lemma is from [9, Theorem 2]. �

Proposition 2.5. Let D be a division ring with center F and w(x1, x2, . . . , xm)
a generalized group monomial over D∗. Then if |F | > α(w)+m and D∗ satisfies

the identity w(x1, x2, . . . , xm) = 1, then D = F .

Proof. We assume that w(x1, x2, . . . , xm) = a1x
α1

i1
a2x

α2

i2
· · · atx

αt

it
at+1. If the

center F is infinite, then D is commutative by Lemma 2.4. Suppose that F is
finite. Let x, y1, y2 . . . , ym be m+1 indeterminates. Consider the division ring
K = D[[y1, y2, . . . , ym]]((x)) and the division subring H = D((x)) of K. It is
easy to see that F ((x)) is infinite, so that, by Lemma 2.4, H does not satisfy
w(x1, x2, . . . , xm) = 1. That means, there exist u1, u2, . . . , um ∈ H such that
w(u1, u2, . . . , um) 6= 1. Hence, w1(y1, y2, . . . , ym) = w(1 + y1x, 1 + y2x, . . . , 1 +
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ymx) is an expression which does not coincide with 1 identically. Observe that
(or see [15, Remark 8.2.10]) in the division ring K, for any 1 ≤ i ≤ m,

(1 + yix)
−1 = 1 +

∞∑

j=0

(−yi)
jxj .

One has, w1(y1, y2, . . . , ym) = w(1 + y1x, 1 + y2x, . . . , 1 + ymx) has a form

= 1 +
∞∑

j=1

fj(y1, y2, . . . , ym)xj .

Where fj(y1, y2, . . . , ym), j ≥ 1, are generalized polynomials overD in the inde-
terminates y1, y2, . . . , ym. Notice that there is some j0 such that fj0(y1, y2, . . . ,
ym) 6≡ 0 since w1(y1, y2, . . . , ym) 6≡ 1. We claim that fj0(y1, y2, . . . , ym) is a
generalized polynomial identity of D. Since the cardinality of F is greater
than α(w) + m and by Lemma 2.3, one has w1(u1, u2, . . . , um) ≡ 1 for any
u1, u2, . . . , um ∈ D. It implies fj0(u1, u2, . . . , um) = 0 for any u1, u2, . . . , um ∈
D. Therefore, fj0(y1, y2, . . . , ym) is a generalized polynomial identity of D. By
[3, Theorem 6.1.9], D is finite-dimensional over F and hence D is a (finite)
commutative field. �

The following result is an extension of both [9, Theorem 2] and [5, Theorem
4].

Theorem 2.6. Let D be a division ring with center F and w(x1, x2, . . . , xm) =
a1x

α1

i1
a2x

α2

i2
· · · atx

αt

it
at+1 be a generalized group monomial over D∗. If |F | >

min{ 2t + m,α(w) + m } and D∗ satisfies the identity w(x1, x2, . . . , xm) = 1,
then D = F .

Proof. By Proposition 2.5 , it suffices to prove that if the cardinality of F is
greater than 2t+m, then D = F . Assume that D 6= F . We substitute yiby

−1
i

for xi, i = 1, 2, . . . ,m, in w(x1, x2, . . . , xm), and b 6∈ F . Then

w1(y1, y2, . . . , ym) = w(y1by
−1
1 , y2by

−1
2 , . . . , ymby−1

m )

= a1yi1b
α1y−1

i1
a2yi2b

α2y−1
i2

a3 · · · yitb
αty−1

it
at+1.

One has w1(y1, y2, . . . , ym) = 1 is a generalized group identity of D∗ and
α(w1) = 2t. Applying again Proposition 2.5, we have D = F . Contradic-
tion! �

3. Subnormal subgroups of D∗ satisfying a generalized group

identity

In this section, we show that every subnormal subgroup of D∗ with center
F which satisfies a generalized group identity is contained in F if F contains
sufficiently many elements. Two interesting corollaries will be proved then.
We first prove some basic lemmas on generalized group monomials over an
arbitrary group G.
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Lemma 3.1. Let w(x1, x2, . . . , xm) be a generalized group monimial over a

group G. Then there exists a generalized group monomial

w1(x1, x2, . . . , xm) = b1x
β1

i1
b2x

β2

i2
· · ·atx

βt

it
bt+1

over G such that two following conditions hold.

(1) For any 1 ≤ j ≤ t− 1, whenever ij = ij+1, one has bj+1 /∈ Z(G).
(2) w(c1, c2, . . . , cm) = w1(c1, c2, . . . , cm) for any c1, c2, . . . , cm ∈ G.

(3) α(w1) = α(w).

Proof. Assume that w(x1, x2, . . . , xm) = a1x
α1

i1
a2x

α2

i2
· · · atx

αt

it
at+1, where αj ∈

Z\{0}, ij ∈ {1, 2, . . . ,m} and ai ∈ G such that for any j = 1, 2, . . . , t − 1,
whenever ij = ij+1 and αjαj+1 < 0, one has aj+1 /∈ Z(G). Without loss of
generality, we suppose that only a2 ∈ Z(G). Then i1 6= i2 or α1α2 > 0. If
i1 6= i2, then put

w1(x1, x2, . . . , xm) = a1a2x
α1

i1
xα2

i2
a3 · · · atx

αt

it
at+1.

If i1 = i2 and α1α2 > 0, then put

w1(x1, x2, . . . , xm) = a1a2x
α1+α2

i1
a3 · · · atx

αt

it
at+1.

In both cases, we have w(c1, c2, . . . , cm) = w1(c1, c2, . . . , cm) for any c1, c2, . . .,
cm ∈ G and w1(x1, x2, . . . , xm) satisfies (1) and (3). �

Assume a is a non-central element of a group G and y is an indeterminate.
Put

u0(y) = y, uℓ(y) = uℓ−1(y)auℓ−1(y)
−1

for any ℓ ≥ 1. It is clear that uℓ(y) is a generalized group monomial over G
and the length α(uℓ(y)) = 2ℓ for ℓ > 0.

Lemma 3.2. Let w(x1, x2, . . . , xm) = a1x
α1

i1
a2x

α2

i2
· · ·atx

αt

it
at+1 be a gener-

alized group monomial over G such that for 1 ≤ j ≤ t − 1, whenever ij =
ij+1, one has aj+1 /∈ Z(G). Let y1, y2, . . . , ym be m indeterminates. Then

w′(y1, y2, . . . , ym) = w(uℓ(y1), uℓ(y2), . . . , uℓ(ym)) is also a generalized group

monomial over G for any ℓ ≥ 1.

Proof. There is nothing to do if ℓ = 0. Assume that ℓ > 0. We have uα
ℓ =

uℓ−1(y)a
αuℓ−1(y)

−1 and, therefore,

w′(y1, y2, . . . , ym) = w(uℓ(y1), uℓ(y2), . . . , uℓ(ym))

= a1 yi1a · · · a
α1 · · · y−1

i1
︸ ︷︷ ︸

uℓ(yi1
)

a2 yi2a · · · a
α2 · · · y−1

i2
︸ ︷︷ ︸

uℓ(yi2
)

a3 · · · at yita · · ·a
αt · · · y−1

it
︸ ︷︷ ︸

uℓ(yit
)

at+1.

Since a is non-central, it is easy to check that the inside of all ∗
︸︷︷︸

uℓ(yij
)

satisfies

conditions of the definition of generalized group monomials. Now for any 0 <
j < t, if ij = ij+1, then by the hypothesis of w(x1, x2, . . . , xm), ai /∈ Z(G).
Thus, w′(y1, y2, . . . , ym) is a generalized group monomial over G. �
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A subgroup H of a group G is called an r-subnormal subgroup of G for some
positive integer r if there exist r subgroups N1, N2, . . . , Nr of G such that

N = Nr ⊳ Nr−1 ⊳ · · · ⊳ N0 = G.

Theorem 3.3. Let D be a division ring with center F , N be an r-subnormal

subgroup of D∗ and w(x1, x2, . . . , xm) = a1x
α1

i1
a2x

α2

i2
· · ·atx

αt

it
at+1 be a general-

ized group monomial over D∗. Then if N satisfies the identity w(x1, x2, . . . , xm)
= 1 and |F | > 2rt+m, then N is contained in F .

Proof. If r = 0, i.e., N = D∗, then by Theorem 2.6, N = D = F . Assume that
r ≥ 1 and N is not contained in F . By Lemma 3.1, we assume that

w(x1, x2, . . . , xm) = a1x
α1

i1
a2x

α2

i2
· · · atx

αt

it
at+1

which satisfies the condition whenever ij = ij+1, one has bj+1 /∈ F for any
1 ≤ j ≤ m− 1. Since N is r-subnormal in D∗, there exist a positive integer r
and subgroups N1, N2, . . . , Nr of D∗ such that

N = Nr ⊳ Nr−1 ⊳ · · · ⊳ N1 ⊳ N0 = D∗.

Fix a non-central element a in N . Let u0(y) = y, uℓ(y) = uℓ−1(y)auℓ−1(y)
−1

for any ℓ = 1, 2, . . . , r as in Lemma 2.4. Observe that uℓ(b) ∈ Nℓ for any b in
D∗ and ℓ = 1, 2, . . . , r, so that, by Lemma 2.4,

w′(y1, y2, . . . , ym) = w(ur(y1), ur(y2), . . . , ur(ym)) = 1

is a generalized group identity of D∗. Since |F | > 2rt+m = α(w′)+m and by
Lemma 2.6, D = F . Thus, N ⊆ F . Contradiction! �

Recall that for a division ring D with center F , an element x of D is called
algebraic over F if x is a root of a non-zero polynomial over F . A subset S of D
is called algebraic over F if every element of S is algebraic over F . Notice that
for an algebraic element x of D∗ over F , we have that x−1 belongs to ∈ F [x],
the subring of D generated by x and F . It implies that every subring H of D
which contains F and is algebraic over F is a division subring of D. This fact
will be used several times in this paper.

Proposition 3.4. Let D be a division ring with center F and w(x1, x2, . . . , xm)
be a generalized group monomial over D∗. Assume that N is a subnormal

subgroup of D∗ such that N is algebraic over F . If N satisfies the identity

w(x1, x2, . . . , xm) = 1, then it is contained in F .

Proof. If F is infinite, then, by Theorem 3.3, N is contained in F . Assume
that F is finite. Then for any x ∈ N , the subring F [x] of D generated by x
and F is a finite division ring. Hence, x is torsion. Now by [11, Theorem 8],
one has N ⊆ F . �

To prove next interesting result, we need a basic lemma.

Lemma 3.5. Let G be a group and N be a subnormal subgroup of G. For any

subgroup H of G, the subgroup H ∩N is subnormal subgroup of H.
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Proof. Assume that N = Nr ⊳ Nr−1 ⊳ · · · ⊳ N0 = G. Put Mi = H ∩Ni for any
i = 0, 1, . . . , r. It is easy to check N ∩H = Mr ⊳ Mr−1 ⊳ · · · ⊳ M0 = H . �

Let D be a division ring with center F and N be a subnormal subgroup of
D∗. Goncalves and Mandel showed that if there exists a positive integer n such
that xn ∈ F , thenN is contained in F [10, Theorem 5.2], which answer partially
the Herstein Conjecture [11, Conjecture 3]. Here, we prove the following result.

Proposition 3.6. Let D be a division ring with center F and N be a subnormal

subgroup of D∗. Assume that K is a subfield of D. If there exists a positive

integer n such that xn ∈ K for any x ∈ N , then N is contained in F .

Proof. Since K is a field, N satisfies the identity xnynx−ny−n = 1. If F is
infinite, then N is contained in F by Proposition 3.3. Now we consider the
case when F is finite. Without loss of generality, assume that K is a maximal
subfield of D. We claim that N ⊆ K. Suppose that N 6⊆ K. Then there exists
a ∈ N such that a /∈ K and an ∈ K. Put L = CD(an) = {x ∈ D | anx = xan},
the centralizer of an in D. Observe that L is a division subring of D whose
center Z(L) contains F (an) and that K is contained in L. There are two cases:

Case 1. an is not algebraic over F . Then, the field F (an) is infinite. Put
N1 = N ∩ L. One has N1 is a subnormal subgroup of L∗ (Lemma 3.5) and
satisfies the identity xnynx−ny−n = 1. By Proposition 3.4, N1 ⊆ Z(L). Notice
that K is a maximal subfield of L since K is a maximal subfield of D. Hence,
a ∈ N1 ⊆ Z(L) ⊆ K. Contradiction!

Case 2. an is algebraic over F . Since F is finite, so is F (an). It implies
that a is torsion. By [4, Proposition 2.2], there exists a division subring D1

of D such that D1 is algebraic over Z(D1) and a ∈ D1\Z(D1). Therefore,
N1 = D∗

1 ∩N is a subnormal subgroup of D1 (Lemma 3.5) and N1 also satisfies
the identity xnynx−ny−n = 1. By Lemma 3.4, N1 ⊆ Z(D1). In particular,
a ∈ Z(D1). Contradiction!

Thus the claim is proved. It means that N ⊆ K, which implies N ⊆ F by
[16, 14.4.4]. �

4. Maximal subgroups of D∗ satisfying a generalized group identity

In this section, we focus on maximal subgroups of D∗ which satisfying a
generalized group identity. The following lemmas are basic.

Lemma 4.1. Let D be a division ring and M a maximal subgroup of D∗. Then

either F (M) = D or M ∪ {0} is a division subring of D, where F (M) is the

division subring of D generated by F and M .

Proof. We have M ⊆ F (M)∗. Hence either F (M) = D or M = F (M)∗. If
F (M) 6= D, then M ∪ {0} = F (M), a division subring of D. �

Let G be a (multiplicative) group. The subgroup [G,G] of G generated by all
commutators xyx−1y−1, where x, y range over G, is called the derived subgroup

of G.
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Lemma 4.2. Let G be a group with center Z(G). If M is a maximal subgroup

of G, then either M contains Z(G) or M contains the derived subgroup [G,G]
of G.

Proof. Assume that M does not contain Z(G). Then by the maximality of M
in G, G = Z(G)M . One has [G,G] = [Z(G)M,Z(G)M ] ⊆ M . �

Theorem 4.3. Let D be a division ring with center F . Assume that M is a

maximal subgroup of D∗ which satisfies w(x1, x2, . . . , xm)= 1 with w(x1, x2, . . . ,
xm) = a1x

α1

i1
a2x

α2

i2
· · · atx

αt

it
at+1 a generalized group monomial over M . Then,

if |F | > 2t+m and F (M) 6= D, then M is abelian.

Proof. By Lemma 4.2, either M contains the derived subgroup [D∗, D∗] of D∗

or M contains F ∗. If the derived subgroup [D∗, D∗] ⊆ M , then [D∗, D∗] satis-
fies the identity w(x1, x2, . . . , xm) = 1. By Theorem 3.3, D = F , which implies
M is abelian. Now we assume that M contains F ∗. Then, by Lemma 4.1,
L = M ∪ {0} is a division subring of D. Hence L∗ = M satisfies the identity
w(x1, x2, . . . , xm) = 1. Since the center K of L contains F , the cardinality of
K is greater than 2t+m. By Theorem 2.6, M is abelian. �

Remark 4.4. The condition “F (M) 6= D” is essential in Theorem 4.3 because
there are examples of division rings D whose multiplicative groups D∗ contain
maximal subgroups M such that M satisfies a (generalized) group identity
and is not abelian. For example, consider H = C1 ⊕ Cj, the Hamilton real
quaternion. By [1, Theorem 1], H∗ contains a maximal subgroup M = C∗ ∪
C∗j which is not abelian but M satisfies a group identity since M is solvable
(|M/C∗| = 2 and C∗ is abelian).

A division ring D with center F is called a division F -algebra or a centrally

finite division ring ifD is a finite-dimensional vector space over F [13, Definition
14.1]. In this case, dimF D = (dimF K)2 where K is a maximal subfield of D,
and dimF K is called the degree of D. Two following results extend partially
of [12, Theorem 4.1] and [1, Theorem 4] for a division ring.

Proposition 4.5. Let D be a division ring with center F . Assume that M is

a maximal subgroup of D∗ such that F [M ], the subring of D generated by M
and F , is algebraic over F and F [M ] 6= D. Then, if M satisfies a generalized

group identity w(x1, x2, . . . , xm) = 1 over M , then D is centrally finite, and M
is the multiplicative group of a maximal subfield K of D and there is no field

F $ L $ K.

Proof. We have F [M ] is a division subring of D which contains F . If F is
infinite, then by Theorem 4.3, M is abelian. If F is finite, then F [M ] is a divi-
sion ring which algebraic over the finite field F . Hence, by Jacobson’s Theorem
F [M ] is commutative [13, Theorem 13.11]. In both cases, M is abelian. In par-
ticular, F [M ] is a PI-ring, so that D is centrally finite by [12, Theorem 3.5], and
M is the multiplicative group of the maximal subfield K = F [M ] of D. For the
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last statement, assume that there exists a subfield L ofK such that F $ L $ K.
By [13, Theorem 15.4], 1 < dimCD(L)D = dimF L < n = dimK D, where n is

the degree of D. Therefore, M $ CL(D)∗ $ D∗, which contradicts with the
hypothesis. �

Proposition 4.6. Let D be a division ring with center F . Assume that M
is a maximal subgroup of D∗ such that M\F contains an algebraic element

over F and F (M) 6= D. Let w(x1, x2, . . . , xm) = a1x
α1

i1
a2x

α2

i2
· · · atx

αt

it
at+1 be a

generalized group monomial over M . Then, if M satisfies w(x1, x2, . . . , xm) =
1 and |F | > 2t+m, then D is centrally finite and M is the multiplicative group

of a maximal subfield K of D and there is no field F $ L $ K.

Proof. By Theorem 4.3, M is abelian, which implies that M = F [M ] is a sub-
field of D. Let x ∈ M\F be an algebraic element of F . Then 1 < dimF F (x) =
dimCD(F (x))D < ∞ by [13, Theorem 15.4]. Since M ⊆ CD(F (x))∗ and the
maximality of M , CD(F (x)) = M ∪ {0}. By [1, Lemma 6], D is centrally
finite. Now using the same argument in the proof of Proposition 4.5, the last
statement is proved. �

Remarks 4.7. The description of the maximal subgroups in Propositions 4.5
and 4.6 is the best one we know because non-commutative division rings whose
multiplicative groups contain abelian maximal subgroups are unknown [1, Con-
jecture C]. More generally, non-commutative division rings D with center F
which satisfy following properties:

(1) char(F ) = p, where p is a prime number,
(2) D is centrally finite of degree p,
(3) and, D contains a maximal subfield K such that K∗ is a maximal

subgroup of D∗ and xp ∈ F for each x ∈ K

are unknown.

In [6, Theorem 2.10] (or see [8]), it is proved that if D∗ contains a maximal
subgroup M such that M/(M ∩ F ) is locally finite, then D satisfies three
properties in Remark 4.7. Here, a group G is called locally finite if every
finitely generated subgroup of G is finite. We end this paper with an analogue
on maximal subgroups whose elements are periodic module F of bounded order.

Proposition 4.8. Let D be a division ring with center F . Assume that M is a

maximal subgroup of D∗ such that F (M) 6= D. Then, if there exists a positive

integer n such that xn ∈ F for any x ∈ M , then

(1) char(F ) = p, where p is a prime number.

(2) D is centrally finite of degree p.
(3) K = M ∪ {0} is a maximal subfield of D and xp ∈ F for each x ∈ K.

Proof. We claim thatK = M∪{0} is a maximal subfield ofD andD is centrally
finite. Indeed, by Lemma 4.2, either M contains the derived subgroup [D∗, D∗]
of D∗ or M contains F ∗. If the derived subgroup [D∗, D∗] ⊆ M , then an ∈ F
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for any a ∈ [D∗, D∗]. By Proposition 3.6 and [13, Corollary 13.16], D = F ,
which contradicts with the hypothesis. Therefore, M contains F ∗. Then, by
Lemma 4.1, K is a division subring of D. Notice that K∗ = M satisfies the
identity xnynx−ny−n = 1, so that by Proposition 4.5, K is a maximal subfield
of D and D is centrally finite. The claim is proved.

By [13, Proposition 15.13], we have char(F ) = p and either xp ∈ F for
any x ∈ K or K is algebraic over Fp, the finite field of p elements. If F is
algebraic over Fp, then so is D. By Jacobson’s Theorem [13, Thereom 13.11],
D is commutative, which contradicts with the hypothesis. Thus, ap ∈ F for
any a ∈ K and hence dimF K = p. The proposition is proved completely. �
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