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ON THE COMPLEX OSCILLATION OF HIGHER ORDER
LINEAR DIFFERENTIAL EQUATIONS

Kai Liu and Lian-Zhong Yang

Abstract. In this paper, we investigate the growth of solutions and
the existence of subnormal solutions for a class of higher order linear
differential equations. We obtain some results which improve and extend
the results of Chen-Shon [2] and Gundersen-Steinbart [5].

1. Introduction

In the study of the oscillation theory of complex differential equations, the
growth of solutions is a very important property. For linear differential equa-
tions of the form

(1) f (n) + an−1(z)f (n−1) + · · ·+ a0(z)f = 0,

where a0(z), . . . , an−1(z) are polynomials, it is known that every entire solution
of equation (1) must be of finite order, and if some of the coefficients aj(z)(0 ≤
j ≤ n − 1) are replaced by transcendental entire functions, then equation (1)
has at least one solution of infinite order. This can be proved by mainly using
the Wiman-Valiron theory [6, 8].

In this paper, we assume that the reader is familiar with the fundamental
results and the standard notation of the value distribution theory of meromor-
phic functions [8, 10]. We denote the order of growth of f by σ(f). In addi-
tion, let us define inductively, for r ∈ [0, +∞), exp[1] r = er and exp[n+1] r =
exp(exp[n] r), n ∈ N. For all r sufficiently large, define log[1] r = log r and
log[n+1] r = log(log[n] r), n ∈ N. To express the rate of growth of meromorphic
functions of infinite order, we recall the following definitions [7].

Definition 1.1. The iterated p-order σp(f) of a meromorphic function f is
defined by

σp(f) = lim sup
r→∞

log[p] T (r, f)
log r

, p ∈ N.
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Definition 1.2. Suppose f 6= 0 is a solution of equation (1) and if f satisfies
the condition

lim sup
r→∞

log T (r, f)
r

= 0,

then we say that f is a nontrivial subnormal solution of equation (1).

Chiang and Gao [3] gave the definition of the e-type order of meromorphic
function as follows:

Definition 1.3. Let f be a meromorphic function. Define

σe(f) = lim sup
r→∞

log T (r, f)
r

to be the e-type order of f .

From Definition 1.3, we know that if σe(f) = 0, then f must be subnormal.
The following results are obviously.

(i) If 0 < σe(f) < ∞, then σ2(f) = 1,
(ii) if σ2(f) < 1, then σe(f) = 0,
(iii) if σ2(f) = ∞, then σe(f) = ∞.
Thus the iterated order and the e-type order can be applied to get a more

precise estimate of the growth of meromorphic function with infinite order.
Wittich [9] investigated the subnormal solution of the equation

(2) f ′′ + P (ez)f ′ + Q(ez)f = 0,

where P (z) and Q(z) are nonconstant polynomials in z.

Theorem A. If f 6= 0 is a subnormal solution of (2), then f must have the
form

f(z) = ecz(h0 + h1e
z + · · ·+ hmemz),

where m ≥ 0 is an integer, c, h0, . . . , hm are constants and h0, hm 6= 0.

Based on the comparison of degrees of P and Q, Gundersen and Steinbart
[5] improved Theorem A and obtained the following theorem.

Theorem B. The following statements hold with regard to the subnormal so-
lutions of equation (2),

(i) if deg P > deg Q and Q 6= 0, then any subnormal solution f 6= 0 of
equation (2) must have the form

f(z) =
m∑

k=0

hke−kz,

where m ≥ 1 is an integer and h0, . . . , hm are constants, h0, hm 6= 0,
(ii) if deg P ≥ 1 and Q = 0, then any subnormal solution of equation (2)

must be a constant,
(iii) if deg P < deg Q, then the subnormal solution of equation (2) is f = 0.
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Gundersen and Steinbart [5] also considered non-homogeneous differential
equations

(3) f ′′ + P (ez)f ′ + Q(ez)f = R1(ez) + R2(e−z),

where P (z), Q(z), R1(z) and R2(z) are polynomials in z and obtained the
following theorem.

Theorem C. Suppose f 6= 0 is a subnormal solution of (3) and deg P > deg Q.
(i) If deg P > deg R1, then f must have the form

f(z) = S1(ez) + S2(e−z),

where S1(z) and S2(z) are polynomials in z;
(ii) if deg P ≤ deg R1, then f must have the form

f(z) = cz

m∑

k=0

ake−kz + S1(ez) + S2(e−z),

where m ≥ 0 is an integer, c, a0, . . . , am are constants with a0, am 6= 0, and
S1(z), S2(z) are polynomials in z.

They also raised the following question in [5]:

Question. Whether equation (3) in Theorem C can be generalized to equation

(4) f ′′ + [P1(ez) + P2(e−z)]f ′ + [Q1(ez) + Q2(e−z)]f = R1(ez) + R2(e−z) ?

With regard to above question, Chen and Shon [2] investigated the exis-
tence of subnormal solutions of equation (4) and its corresponding homoge-
neous equation

(5) f ′′ + [P1(ez) + P2(e−z)]f ′ + [Q1(ez) + Q2(e−z)]f = 0.

They obtained some results about the subnormal solutions and the growth of
solutions of (4) and (5). Their results can be stated as follows.

Theorem D. Let Pj(z), Qj(z) (j = 1, 2) be polynomials in z. If

deg Q1 > deg P1 or deg Q2 > deg P2,(6)

then the differential equation (5) has no nontrivial subnormal solutions, and
every nontrivial solution of (5) satisfies σ2(f) = 1.

Theorem E. Let Pj(z), Qj(z) (j = 1, 2) be polynomials in z, and R1+R2 6= 0.
If Pj(z), Qj(z) satisfy the conditions (6), then

(i) equation (4) has at most a subnormal solution f0, and f0 = S1(ez) +
S2(e−z), where S1(z) and S2(z) are polynomials in z;

(ii) all solutions f of equation (4) satisfy σ2(f) = 1 except the subnormal
solution in (i).

The main purpose of this paper is to improve Theorems D, E to higher order
periodic differential equations. Furthermore, we replace the exponent z or −z
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with nonconstant entire functions to the former theorems. We obtained the
following results.

Theorem 1.1. Let Pj(z), Qj(z) (j = 0, 1, . . . , n− 1) be polynomials in z. If

deg P0 > deg Pj or deg Q0 > deg Qj j = 1, . . . , n− 1,

then the n-th order differential equation

(7) f (n) + [Pn−1(ez) + Qn−1(e−z)]f (n−1) + · · ·+ [P0(ez) + Q0(e−z)]f = 0

has no nontrivial subnormal solution, and every nontrivial solution satisfies
σ2(f) = 1.

Remark 1.1. Obviously, equation (7) is more general than equation (5) in The-
orem D. The following example shows that, in Theorem 1.1, if there exists
deg Pi = deg Pj and deg Qi = deg Qj , i 6= j, then equation (7) may have a
nontrivial subnormal solution.

Example. A subnormal solution f = e−z satisfies the following equation

f (n) + f (n−1) + · · ·+ f ′′ + (e2z + e−2z)f ′ + (e2z + e−2z)f = 0,

where n is an odd number.

Remark 1.2. If deg Pj > deg P0, then equation (7) may have a nontrivial
subnormal solution, which can be seen by the following example.

Example. A subnormal solution f = e−z − 1 satisfies the equation

f ′′′ + ezf ′′ + (e2z − e−z)f ′ − (ez + e−z)f = 0.

Corollary 1.1. Under the assumptions of Theorem 1.1, the following equation

f (n) + [Pn−1(ez) + Qn−1(e−z)]f (n−1) + · · ·+ [P1(ez) + Q1(e−z)]f ′(8)

+ [P0(ez) + Q0(e−z)]f = R1(ez) + R2(e−z),

has at most a subnormal solution f0, and other solutions f satisfy σ2(f) = 1.

Theorem 1.2. Let A(z), B(z) be nonconstant entire functions, and let P (z),
Q(z) be polynomials in z. Then

(9) f ′′ + P (eA)f ′ + Q(eB)f = 0

has no nontrivial subnormal solutions except two cases:
(1) A(z), B(z) are polynomials in z, deg A = deg B and deg P = deg Q.
(2) A(z), B(z) are transcendental entire functions, deg P = deg Q and

σp(A(z)) = σp(B(z)).

Remark 1.3. From the conclusion of Theorem A, we easily find that deg P =
deg Q, which can be seen a special case of (1) in Theorem 1.2.
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2. Some lemmas

The following two results easily get from the classical Wiman-Valiron theory.

Lemma 2.1. Let Ai (i = 0, 1, . . . , n− 1) be finite order entire functions. If f
is a solution of differential equation

f (n) + An−1f
(n−1) + · · ·+ A0f = 0,

then σ2(f) ≤ max{σ(Ai)}.
Lemma 2.2. Let f(z) be an entire function of order σ, and let νf (r) be the
central index of f. Then

σ = lim sup
r→∞

log+ νf (r)
log r

.

Lemma 2.3 ([4]). Let f be a transcendental meromorphic function, and let
α > 1 be a given constant. Then there exists a set E ⊂ (1,+∞) with finite
logarithmic measure and a constant B > 0 that depends only on α and m, n(0 ≤
m < n) such that for all |z| = r 6∈ (0, 1) ∪ E, we have

∣∣∣∣
f (n)(z)
f (m)(z)

∣∣∣∣ ≤
(

T (αr, f)
r

logα r log T (αr, f)
)n−m

.

Lemma 2.4. Let f be a transcendental entire function, and let s be a positive
integer. Then there exists one sequence {rk}(rk →∞) such that

∣∣∣ f(z)
f(s)(z)

∣∣∣ ≤ r2s
k

holds for enough large rk, as |z| = rk.

Proof. Using the similarly method as the proof of Lemma 14 in [1], we get that
there exists one sequence {rk} (rk →∞) such that

f (s)(z)
f(z)

=
(

νf (rk)
z

)s

(1 + o(1)), n ∈ N,

holds for enough large {rk}, as |z| = rk and |f(z)| = M(rk, f).
On the other hand, since f is an entire function, from Lemma 2.2, which

implies that for any ε > 0, we have νf (rk) ≥ rσ−ε
k , where σ− ε can be replaced

with a large enough real number M if σ = ∞. By calculation, we get
∣∣∣ f(z)
f(s)(z)

∣∣∣ ≤
r
(1−σ+ε)s
k ≤ r2s

k . ¤

Lemma 2.5 ([8]). Let g : (0, +∞) → R, h : (0, +∞) → R be monotone
increasing functions such that g(r) ≤ h(r) outside of an exceptional set E of
finite linear measure. Then, for any α > 1, there exists r0 > 0 such that
g(r) ≤ h(αr) for all r > r0.
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3. Proofs of main results

Proof of Theorem 1.1. Suppose that

Pj(z) = ajmj z
mj + ajmj−1z

mj−1 + · · ·+ aj1z + aj0,

Qj(z) = bjnj z
nj + bjnj−1z

nj−1 + · · ·+ bj1z + bj0,

where j = 0, 1, . . . , n− 1 and mj , nj ∈ Z.
Let f 6= 0 be a solution of equation (7). Then f must be an entire function.

From Lemma 2.1, we get

σ2(f) ≤ max{σ (Pj(ez)) , σ (Qj(ez))} = 1.

The following, we will prove σ2(f) ≥ 1. By Lemma 2.3, we see that there
exists a subset E ⊂ (1,+∞) with finite logarithmic measure and a constant
B > 0 such that for all z satisfying |z| 6∈ (0, 1) ∪ E, and we have

∣∣∣∣
f (j)(z)
f(z)

∣∣∣∣ ≤ B[T (2r, f)]j+1, j = 1, 2, . . . , n− 1.(10)

If deg P0 > deg Pj , then we take z = r. If deg Q0 > deg Qj , we take
z = −r. Combining (7) with(10), for a sufficiently large r and r 6∈ (0, 1) ∪ E,
we obtain

|P0(ez) + Q0(e−z)| = |a0m0 |em0r(1 + o(1))

≤
∣∣∣∣
f (n)

f

∣∣∣∣ + |Pn−1(ez) + Qn−1(e−z)|
∣∣∣∣
f (n−1)

f

∣∣∣∣ + · · ·

+ |P1(ez) + Q1(e−z)|
∣∣∣∣
f ′

f

∣∣∣∣
≤ B[T (2r, f)]n+1 + |an−1mn−1 |emn−1rB[T (2r, f)]n(1+o(1))

+ · · ·+ |a1m1 |em1rB[T (2r, f)]2(1 + o(1))

≤ B[T (2r, f)]n+2Memax{m1,...,mn−1}r(1 + o(1)),(11)

where M = max{|an−1mn−1 |, . . . , |a1m1 |}. Since m0 > max{m1, . . . , mn−1},
utilizing (11) and Lemma 2.5, we get σ2(f) ≥ 1. Thus, σ2(f) = 1.

Now we will prove any solution f(6= 0) is not subnormal. Otherwise, if f is
subnormal, from Definition 1.2, for any given ε, 0 < ε < 1

4n+8 , f satisfies

T (r, f) ≤ erε.(12)

As we take z = r 6∈ (0, 1) ∪ E, from (11) and (12), we obtain that

|a0m0 |em0r(1 + o(1)) ≤ Be(2n+4)rεMemax{m1,...,mn−1}r(1 + o(1))

≤ Be
1
2 rMemax{m1,...,mn−1}r(1 + o(1)).

Since m0 > max{m1, . . . ,mn−1}, we get a contradiction as r → ∞. Hence,
equation (7) has no nontrivial subnormal solution, thus we have completed the
proof of Theorem 1.1. ¤
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Proof of Corollary 1.1. If f1 and f2 are two distinct subnormal solutions of
equation (8), so f2 − f1 is a subnormal solution of the corresponding homoge-
neous equation (7), which contradicts the results of Theorem 1.1.

By Theorem 1.1, we see that all solutions of the corresponding homogeneous
equation (7) of (8) are of σ2(f) = 1. By the variation of parameters, we see
that all solutions of equation (8) satisfy σ2(f) ≤ 1. If σ2(f) < 1, then f clearly
satisfies σe(f) = 0, so f is subnormal. Hence we see that all other solutions f
of equation (8) satisfy σ2(f) = 1 at most one subnormal solution. ¤

Proof of Theorem 1.2. We divide into two cases:

Case 1. A(z), B(z) are polynomials. Suppose that p, q, m, n are constants,

A(z) = Apz
p + Ap−1z

p−1 + · · ·+ A0, B(z) = Bqz
q + Bq−1z

q−1 + · · ·+ B0,

P (z) = amzm + am−1z
m−1 + · · ·+ a0, Q(z) = bnzn + bn−1z

n−1 + · · ·+ b0.

Subcase 1.1. m = n.

(1) p = q. In this case, we give an example to illustrate that there exists
nontrivial subnormal solution. The subnormal solution f = e−z satisfies the
equation

f ′′ + (ezk

+ 1)f ′ + ezk

f = 0, k ∈ N.

(2) p > q. If f is a subnormal solution, from (9), then we get

|P (eA)| ≤
∣∣∣∣
f ′′

f ′

∣∣∣∣ + |Q(eB)|
∣∣∣∣
f

f ′

∣∣∣∣ .(13)

From Lemma 2.3, then there exists a set E1 ⊂ (1, +∞) with finite logarithmic
measure and a constant B > 0 such that for all |z| = r 6∈ (0, 1) ∪ E1, we have

∣∣∣∣
f ′′(z)
f ′(z)

∣∣∣∣ ≤ B(T (2r, f))2.

From Lemma 2.4, there exists rk 6∈ (0, 1) ∪ E1 (rk →∞), we get
∣∣∣∣
f(z)
f ′(z)

∣∣∣∣ ≤ r2s
k .

Take suitable z = rk or z = −rk to ensure that Apz
p > 0. From (10) and (13),

we get

|am|em|Aprp
k|(1 + o(1)) ≤ B(T (2rk, f))2 + |bn|en|Bqrq

k|r2s
k (1 + o(1))

≤ 2B(T (2rk, f))2|bn|en|Bqrq
k|r2s

k (1 + o(1)).(14)

Since m = n, p > q, combining (12) with 0 < ε < 1
12 , then (14) changes into

the following form

|am|em(|Aprp
k|−|Bqrq

k|)(1 + o(1)) ≤ 2Be4rkε.r2s
k < 2Be

1
3 rkr2s

k .

Obviously, it is a contradiction. So, there is no subnormal solution in this case.
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(3) p < q. If f is a subnormal solution, from Lemma (2.3), there exists a
set E2 ⊂ (1,+∞) with finite logarithmic measure and a constant B > 0 such
that for all |z| = r 6∈ (0, 1) ∪ E2, take either z = r or z = −r to assure that
Bqz

q > 0, we get

|Q(eB)| = |bn|enBqrq

(1 + o(1))

≤
∣∣∣∣
f ′′

f

∣∣∣∣ + |P (eA)|
∣∣∣∣
f ′

f

∣∣∣∣
≤ B(T (2r, f))3 + |am|em|Aprp|B(T (2r, f))2(1 + o(1))

≤ 4B(T (2r, f))3|am|em|Aprp|(1 + o(1)).(15)

Using the similar argument as the proof of Theorem 1.1, we get a contradiction.

Subcase 1.2. m < n.

(1) p = q. If f is a solution of equation (9), we assert that σ2(f) = p, and f
is not a subnormal solution. Since Lemma 2.1, then we get

σ2(f) ≤ max{σ(P (z)), σ(Q(z))} = p.

Using the similar proof of Theorem 1.1, we get the following inequality

|bn|e(n−m)rp

(1 + o(1)) ≤ 4B(T (2r, f))3|am|(1 + o(1)).(16)

Since m < n, then (16) gives σ2(f) ≥ p. So σ2(f) = p. If f is a subnormal
solution, combining (12) and (16), we get a contradiction.

(2) p < q. We can get a similar inequality to (16) as follows,

|bn|enrq−mrp ≤ 4B(T (2r, f))3|am|(1 + o(1)).(17)

If f is a subnormal solution, combining (12) and (17), we also get a contradic-
tion as r →∞.

(3) p > q. In this case, using the similar method as (2) of Subcase 1.1, we
obtain that there is no subnormal solution of equation (9).

Subcase 1.3. m > n. Similar argument as Subcase 1.2, we get that there is
no subnormal solution of equation (9).

Case 2. If either A(z) or B(z) is a transcendental entire function, without
loss of generality, we assume that A(z) is a transcendental entire function and
f is a solution of (9). From (9), Lemma 2.3 and Lemma 2.4, we get that there
exists E3 ⊂ (1, +∞) with finite logarithmic measure and a constant B > 0
such that for all |z| = rk 6∈ (0, 1) ∪ E3, we have

(18) |am|emM(rk,A(z)) ≤ 4B(T (2rk, f))3|bn|enM(rk,B(z))r2
k(1 + o(1)),

where M(rk, f) = max|z|=rk
|f(z)|.

Subcase 2.1. Suppose that σp(A(z)) > σp(B(z)), thus from (18) and A(z) is
transcendental entire, we get σe(f) = ∞. Hence f is not a subnormal solution.
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Subcase 2.2. Suppose that σp(A(z)) < σp(B(z)). Similarly as above, we get
σe(f) = ∞, hence f is not a subnormal solution.

Subcase 2.3. Suppose that σp(A(z)) = σp(B(z)) and m = n. We give the
following example to illustrate there may exist a subnormal solution in this
case. A subnormal solution f = e−z satisfies the equation

f ′′ + (exp[n+1] z + 1)f ′ + (exp[n+1] z)f = 0.

Thus, we have completed the proof of Theorem 1.2. ¤
Acknowledgments. The authors thank the referees for their careful reading
of the paper and insightful comments.
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