• 제목/요약/키워드: Sub-model

검색결과 4,912건 처리시간 0.029초

작물모형 입력자료용 일사량 추정을 위한 지역 특이적 AP 계수 평가 (Assessment of Region Specific Angstrom-Prescott Coefficients on Uncertainties of Crop Yield Estimates using CERES-Rice Model)

  • 조영상;정재민;현신우;김광수
    • 한국농림기상학회지
    • /
    • 제24권4호
    • /
    • pp.256-266
    • /
    • 2022
  • 일사량은 작물모형의 구동에 필수적인 요소지만, 일사량의 직접관측은 다른 기상자료들과 다르게 많은 인적, 물적 자원이 필요하다. 직접 일사량을 측정하는 대신 다른 기상자료를 통해 일사량을 추정하는 여러 방식이 존재하고 그중 대표적인 방법이 일조시간을 통해 일사량을 추정하는 Angstrom-Prescott 모델이다. Frere and Popov(1979)에 의해 전세계의 기후를 세 분류로 나누어 일조시간을 일사량으로 변환하는 AP 계수(APFrere)가 제시되었고, 국내 18개 종관기상관측소에서 30년간 관측한 일단위 일사량과 일조량 관측자료를 통해 AP계수를 경험적으로 도출한 계수(APChoi)가 Choi et al.(2010)에 의해 제시되었다. 본 연구에서는 2012년부터 2021년까지 일사량 관측값(SObs)과 APFrere와 APChoi를 통해 도출한 일사량(SFrere, SChoi)을 NRMSE와 t검정을 통해 분석하였고, 이를 DSSAT 작물모형에 입력모수로 사용하여 벼 품종 오대, 화성 및 추청에 대한 생육모의를 하였다. 일사량 추정 결과 일사량의 추정값과 측정값 사이에는 12%에서 22%사이의 오차가 존재하였고, 이를 3월부터 9월 사이의 생육기간에 한정하여 누적 일사량을 계산하면 오차가 줄었다. 18개의 지역중 관찰값과 생육기간의 누적 일사량은 SFrere의 경우에 10개의 지역에서 SChoi 보다 SObs와 가까웠고, 일일 일사량의 오차율을 통해 분석하였을때 SFrere가 12개 지역에서 더 가까웠다.

Evaluation of the CNESTEN's TRIGA Mark II research reactor physical parameters with TRIPOLI-4® and MCNP

  • H. Ghninou;A. Gruel;A. Lyoussi;C. Reynard-Carette;C. El Younoussi;B. El Bakkari;Y. Boulaich
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4447-4464
    • /
    • 2023
  • This paper focuses on the development of a new computational model of the CNESTEN's TRIGA Mark II research reactor using the 3D continuous energy Monte-Carlo code TRIPOLI-4 (T4). This new model was developed to assess neutronic simulations and determine quantities of interest such as kinetic parameters of the reactor, control rods worth, power peaking factors and neutron flux distributions. This model is also a key tool used to accurately design new experiments in the TRIGA reactor, to analyze these experiments and to carry out sensitivity and uncertainty studies. The geometry and materials data, as part of the MCNP reference model, were used to build the T4 model. In this regard, the differences between the two models are mainly due to mathematical approaches of both codes. Indeed, the study presented in this article is divided into two parts: the first part deals with the development and the validation of the T4 model. The results obtained with the T4 model were compared to the existing MCNP reference model and to the experimental results from the Final Safety Analysis Report (FSAR). Different core configurations were investigated via simulations to test the computational model reliability in predicting the physical parameters of the reactor. As a fairly good agreement among the results was deduced, it seems reasonable to assume that the T4 model can accurately reproduce the MCNP calculated values. The second part of this study is devoted to the sensitivity and uncertainty (S/U) studies that were carried out to quantify the nuclear data uncertainty in the multiplication factor keff. For that purpose, the T4 model was used to calculate the sensitivity profiles of the keff to the nuclear data. The integrated-sensitivities were compared to the results obtained from the previous works that were carried out with MCNP and SCALE-6.2 simulation tools and differences of less than 5% were obtained for most of these quantities except for the C-graphite sensitivities. Moreover, the nuclear data uncertainties in the keff were derived using the COMAC-V2.1 covariance matrices library and the calculated sensitivities. The results have shown that the total nuclear data uncertainty in the keff is around 585 pcm using the COMAC-V2.1. This study also demonstrates that the contribution of zirconium isotopes to the nuclear data uncertainty in the keff is not negligible and should be taken into account when performing S/U analysis.

Crack growth analysis and remaining life prediction of dissimilar metal pipe weld joint with circumferential crack under cyclic loading

  • Murthy, A. Ramachandra;Gandhi, P.;Vishnuvardhan, S.;Sudharshan, G.
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2949-2957
    • /
    • 2020
  • Fatigue crack growth model has been developed for dissimilar metal weld joints of a piping component under cyclic loading, where in the crack is located at the center of the weld in the circumferential direction. The fracture parameter, Stress Intensity Factor (SIF) has been computed by using principle of superposition as KH + KM. KH is evaluated by assuming that, the complete specimen is made of the material containing the notch location. In second stage, the stress field ahead of the crack tip, accounting for the strength mismatch, the applied load and geometry has been characterized to evaluate SIF (KM). For each incremental crack depth, stress field ahead of the crack tip has been quantified by using J-integral (elastic), mismatch ratio, plastic interaction factor and stress parallel to the crack surface. The associated constants for evaluation of KM have been computed by using the quantified stress field with respect to the distance from the crack tip. Net SIF (KH + KM) computed, has been used for the crack growth analysis and remaining life prediction by Paris crack growth model. To validate the model, SIF and remaining life has been predicted for a pipe made up of (i) SA312 Type 304LN austenitic stainless steel and SA508 Gr. 3 Cl. 1. Low alloy carbon steel (ii) welded SA312 Type 304LN austenitic stainless-steel pipe. From the studies, it is observed that the model could predict the remaining life of DMWJ piping components with a maximum difference of 15% compared to experimental observations.

Empirical Modeling of the Global Distribution of Magnetosonic Waves with Ambient Plasma Environment using Van Allen Probes

  • Kim, Kyung-Chan
    • Journal of Astronomy and Space Sciences
    • /
    • 제39권1호
    • /
    • pp.11-22
    • /
    • 2022
  • It is suggested that magnetosonic waves (also known as equatorial noise) can scatter radiation belt electrons in the Earth's magnetosphere. Therefore, it is important to understand the global distribution of these waves between the proton cyclotron frequency and the lower hybrid resonance frequency. In this study, we developed an empirical model for estimating the global distribution of magnetosonic wave amplitudes and wave normal angles. The model is based on the entire mission period (approximately 2012-2019) of observations of Van Allen Probes A and B as a function of the distance from the Earth (denoted by L*), magnetic local time (MLT), magnetic latitude (λ), and geomagnetic activity (denoted by the Kp index). In previous studies the wave distribution inside and outside the plasmasphere were separately investigated and modeled. Our model, on the other hand, identifies the wave distribution along with the ambient plasma environment-defined by the ratio of the plasma frequency (fpe) to the electron cyclotron frequency (fce)-without separately determining the wave distribution according to the plasmapause location. The model results show that, as Kp increases, the dayside wave amplitude in the equatorial region intensifies. It thereby propagates the intense region towards the wider MLT and inward to L* < 4. In contrast, the fpe/fce ratio decreases with increasing Kp for all regions. Nevertheless, the decreasing aspect differs between regions above and below L* = 4. This finding implies that the particle energy and pitch angle that magnetosonic waves can effectively scatter vary depending on the locations and geomagnetic activity. Our model agrees with the statistically observed wave distribution and ambient plasma environment with a coefficient of determination of > 0.9. The model is valid in all MLTs, 2 ≤ L* < 6, |λ| < 20°, and Kp ≤ 6.

General SPICE Modeling Procedure for Double-Gate Tunnel Field-Effect Transistors

  • Najam, Syed Faraz;Tan, Michael Loong Peng;Yu, Yun Seop
    • Journal of information and communication convergence engineering
    • /
    • 제14권2호
    • /
    • pp.115-121
    • /
    • 2016
  • Currently there is a lack of literature on SPICE-level models of double-gate (DG) tunnel field-effect transistors (TFETs). A DG TFET compact model is presented in this work that is used to develop a SPICE model for DG TFETs implemented with Verilog-A language. The compact modeling approach presented in this work integrates several issues in previously published compact models including ambiguity about the use of tunneling parameters Ak and Bk, and the use of a universal equation for calculating the surface potential of DG TFETs in all regimes of operation to deliver a general SPICE modeling procedure for DG TFETs. The SPICE model of DG TFET captures the drain current-gate voltage (Ids-Vgs) characteristics of DG TFET reasonably well and offers a definite computational advantage over TCAD. The general SPICE modeling procedure presented here could be used to develop SPICE models for any combination of structural parameters of DG TFETs.

CuO-ZnO-Al2O3 촉매에서의 메탄올 수증기 개질반응에 대한 반응속도와 유효성인자 (Kinetic and Effectiveness Factor for Methanol Steam Reforming over CuO-ZnO-Al2O3 Catalysts)

  • 임미숙;서숭혁
    • 한국수소및신에너지학회논문집
    • /
    • 제13권3호
    • /
    • pp.214-223
    • /
    • 2002
  • Kinetic and effectiveness factors for methanol steam reforming using commercial copper-containing catalysts in a plug flow reactor were investigated over the temperature ranges of $180-250^{\circ}C$ at atmospheric pressure. The selectivity of $CO_2$/$H_2$ was almost 100%, and CO products were not observed under reaction conditions employed in this work. It was indicated that $CO_2$ was directly produced and CO was formed via the reverse water gas shift reaction after methanol steam reforming. The intrinsic kinetics for such reactions were well described by the Langmuir-Hinshelwood model based on the dual-site mechanism. The six parameters in this model, including the activation energy of 103kJ/mol, were estimated from diffusion-free data. The significant effect of internal diffusion was observed for temperature higher than $230^{\circ}C$ or particle sizes larger than 0.36mm. In the diflusion-limited case, this model combined with internal effectiveness factors was also found to be good agreement with experimental data.

3구 노즐을 이용한 플라즈마 가스 용존율 향상을 위한 플라즈마 공정의 최적화 (Optimization of Plasma Process to Improve Plasma Gas Dissolution Rate using Three-neck Nozzle)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제30권5호
    • /
    • pp.399-406
    • /
    • 2021
  • The dissolution of ionized gas in dielectric barrier plasma, similar to the principle of ozone generation, is a major performance-affecting factor. In this study, the plasma gas dissolving performance of a gas mixing-circulation plasma process was evaluated using an experimental design methodology. The plasma reaction is a function of four parameters [electric current (X1), gas flow rate (X2), liquid flow rate (X3) and reaction time (X4)] modeled by the Box-Behnken design. RNO (N, N-Dimethyl-4-nitrosoaniline), an indictor of OH radical formation, was evaluated using a quadratic response surface model. The model prediction equation derived for RNO degradation was shown as a second-order polynomial. By pooling the terms with poor explanatory power as error terms and performing ANOVA, results showed high significance, with an adjusted R2 value of 0.9386; this indicate that the model adequately satisfies the polynomial fit. For the RNO degradation, the measured value and the predicted values by the model equation agreed relatively well. The optimum current, gas flow rate, liquid flow rate and reaction time were obtained for the highest desirability for RNO degradation at 0.21 A, 2.65 L/min, 0.75 L/min and 6.5 min, respectively.

ON LIMIT BEHAVIOURS FOR FELLER'S UNFAIR-FAIR-GAME AND ITS RELATED MODEL

  • An, Jun
    • 대한수학회지
    • /
    • 제59권6호
    • /
    • pp.1185-1201
    • /
    • 2022
  • Feller introduced an unfair-fair-game in his famous book [3]. In this game, at each trial, player will win 2k yuan with probability pk = 1/2kk(k + 1), k ∈ ℕ, and zero yuan with probability p0 = 1 - Σk=1 pk. Because the expected gain is 1, player must pay one yuan as the entrance fee for each trial. Although this game seemed "fair", Feller [2] proved that when the total trial number n is large enough, player will loss n yuan with its probability approximate 1. So it's an "unfair" game. In this paper, we study in depth its convergence in probability, almost sure convergence and convergence in distribution. Furthermore, we try to take 2k = m to reduce the values of random variables and their corresponding probabilities at the same time, thus a new probability model is introduced, which is called as the related model of Feller's unfair-fair-game. We find out that this new model follows a long-tailed distribution. We obtain its weak law of large numbers, strong law of large numbers and central limit theorem. These results show that their probability limit behaviours of these two models are quite different.

Development of thermal conductivity model with use of a thermal resistance circuit for metallic UO2 microcell nuclear fuel pellets

  • Heung Soo Lee;Dong Seok Kim;Dong-Joo Kim;Jae Ho Yang;Ji-Hae Yoon;Ji Hwan Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3860-3865
    • /
    • 2023
  • A metallic microcell UO2 pellet has a microstructure where a metal wall is connected to overcome the low thermal conductivity of the UO2 fuel pellet. It has been verified that metallic microcell fuel pellets provide an impressive reduction of the fuel centerline temperature through a Halden irradiation test. However, it is difficult to predict the effective thermal conductivity of these pellets and researchers have had to rely on measurement and use of the finite element method. In this study, we designed a unit microcell model using a thermal resistance circuit to calculate the effective thermal conductivity on the basis of the microstructure characteristics by using the aspect ratio and compared the results with those of reported metallic UO2 microcell pellets. In particular, using the thermal conductivity calculated by our model, the fuel centerline temperature of Cr microcell pellets on the 5th day of the Halden irradiation test was predicted within 6% error from the measured value.