Commun. Korean Math. Soc. **38** (2023), No. 2, pp. 643–648 https://doi.org/10.4134/CKMS.c220179 pISSN: 1225-1763 / eISSN: 2234-3024

ON THE CHARACTERIZATION OF F_0 -SPACES

Mahmoud Benkhalifa

ABSTRACT. Let X be a simply connected rationally elliptic space such that $H^2(X; \mathbb{Q}) \neq 0$. In this paper, we show that if $H^{2n}(X^{[2n-2]}; \mathbb{Q}) = 0$ or if $\pi_{2n}(X^{2n}) \otimes \mathbb{Q} = 0$ for all n, then X is an F_0 -space.

1. Introduction

In this paper, by a space we mean a simply connected CW-complex X of finite type, i.e., dim $H^n(X; \mathbb{Q}) < \infty$ for all n. A space X is called rationally elliptic if both the graded vector spaces $H^*(X; \mathbb{Q})$ and $\pi_*(X) \otimes \mathbb{Q}$ are finite dimensional. Furthermore, if $H^{\text{odd}}(X; \mathbb{Q}) = 0$, then X is called an F_0 -space. For instance, products of even spheres, complex Grassmannian manifolds and homogeneous spaces G/H such that rank G = rank H are F_0 -spaces.

For any positive integer n, let $X^{[n]}$ denote the *n*-th Postnikov section of X and X^n its *n*-skeleton. The aim of this paper is to characterize an F_0 -spaces X in terms of the homotopy groups of the spaces X^n and the rational cohomology of the spaces $X^{[n]}$. In other words, by exploiting the well-known properties of a rationally elliptic space X as well as the virtue of the Whitehead exact sequences associated, respectively, with the Sullivan model and the Quillen model of X, we prove the following.

Theorem 1. Let X be a rationally elliptic space such that $H^2(X; \mathbb{Q}) \neq 0$. We have the following.

- (1) If $\pi_{2n}(X^{2n}) = 0$ for all n, then X is an F_0 -space.
- (2) If $H^{2n}(X^{[2n-2]}; \mathbb{Q}) = 0$ for all *n*, then *X* is an *F*₀-space.

We show our results using standard tools of rational homotopy theory by working algebraically on the models of Quillen and Sullivan of X. We refer to [8] for a general introduction to these techniques. Recall that every simply connected space of finite type has a corresponding differential commutative cochain algebra called the Sullivan model of X, unique up to isomorphism, that encodes the rational homotopy of X. Dually, every simply connected space X

©2023 Korean Mathematical Society

Received June 15, 2022; Revised August 20, 2022; Accepted September 21, 2022.

²⁰²⁰ Mathematics Subject Classification. 55P62.

Key words and phrases. Rationally elliptic space, Sullivan model, Quillen model, Whitehead exact sequence, F_0 -space.

M. BENKHALIFA

has a differential graded Lie algebra (DGL for short), called the Quillen model of X and unique up to isomorphism, which determines completely the rational homotopy type of X.

2. Whitehead exact sequences in rational homotopy theory

2.1. Whitehead exact sequence associated with a DGL

Let $W = (W_{\geq 1})$ be a finite dimensional graded vector space over \mathbb{Q} and let $(\mathbb{L}(W), \delta)$ be a DGL. For any positive integer n, we define the linear maps $j_n : H_n(\mathbb{L}(W_{\leq n})) \to W_n$ and $b_n : W_n \to H_{n-1}(\mathbb{L}(W_{\leq n-1}))$ by setting

$$j_n([w+y]) = w_i$$

and

(1)
$$b_n(w) = [\delta(w)],$$

respectively, where $[\delta(w)]$ denotes the homology class of $\delta(w)$ in the sub-Lie algebra $\mathbb{L}_{n-1}(W_{\leq n-1})$. Recall that if $x \in H_n(\mathbb{L}(W_{\leq n}))$, then x = [w + y], where $w \in W_n$, $y \in \mathbb{L}_n(W_{\leq n-1})$ and $\delta(w + y) = 0$.

To every DGL $(\mathbb{L}(W), \delta)$ we can assign (see [3, 5, 7] for more details) the following long exact sequence

(2)
$$\cdots \to W_{n+1} \xrightarrow{b_{n+1}} \Gamma_n \to H_n(\mathbb{L}(W)) \xrightarrow{h_n} W_n \xrightarrow{b_n} \cdots$$

called the Whitehead exact sequence of $(\mathbb{L}(W), \delta)$, where

(3)
$$\Gamma_n = \ker(j_n : H_n(\mathbb{L}(W_{\leq n})) \to W_n)$$

for all n.

Remark 2.1. It worth mentioning that Γ_n is the sub vector space of $H_n(\mathbb{L}(W_{\leq n}))$ formed by the homology classes $\{z\}$ with $z \in \mathbb{L}_n(W_{\leq n-1})$, i.e., z is a decomposable element.

Remark 2.2. If X is a given space and $(\mathbb{L}(W), \delta)$ is its Quillen model, then the virtue of properties of this model implies the following identifications valid for all n:

(4)

$$\pi_n(X) \otimes \mathbb{Q} \cong H_{n-1}(\mathbb{L}(W)),$$

$$H_n(X; \mathbb{Q}) \cong W_{n-1},$$

$$\Gamma_n(X) \cong \Gamma_{n-1},$$

where $\Gamma_n(X) = \ker(\pi_n(X^n) \otimes \mathbb{Q} \longrightarrow \pi_n(X^n; X^{n-1}) \otimes \mathbb{Q}).$

Moreover, the linear map h_n can be identified with the dual of the rational Hurewicz homomorphism $h_{n+1}^X : \pi_{n+1}(X) \otimes \mathbb{Q} \to H_{n+1}(X, \mathbb{Q})$ for every n.

2.2. Whitehead exact sequence of Sullivan algebra

Likewise, let $(\Lambda V, \partial)$ be a Sullivan algebra. In [1, 2, 4, 6], it is shown that with $(\Lambda V, \partial)$, we can associate the following long exact sequence

(5)
$$\cdots \to V^n \xrightarrow{b^n} H^{n+1}(\Lambda V^{\leq n-1}) \xrightarrow{i^{n+1}} H^{n+1}(\Lambda V) \xrightarrow{h^{n+1}} V^{n+1} \xrightarrow{b^{n+1}} \cdots$$

called the Whitehead exact sequence of $(\Lambda V, \partial)$. Recall that the linear map $b^n: V^n \to H^{n+1}(\Lambda(V^{\leq n}))$ is defined by setting

(6)
$$b^n(v) = [\partial(v)]$$

Here $[\partial(v)]$ denotes the cohomology class of $\partial(v) \in (\Lambda V^{\leq n})^{n+1}$.

Remark 2.3. If X is a given space and $(\Lambda V, \partial)$ is its Sullivan minimal model, then by virtue of the properties of this model we obtain the following identifications valid for every n:

(7)
$$H^{n}(X;\mathbb{Q}) \cong H^{n}(\Lambda V),$$
$$Hom(\pi_{n}(X),\mathbb{Q}) \cong V^{n},$$
$$H^{n+1}(X^{[n-1]};\mathbb{Q}) \cong H^{n}(\Lambda V).$$

Moreover, the linear map h^n can be identified with the dual of the rational Hurewicz homomorphism $h_n^X : \pi_n(X) \otimes \mathbb{Q} \to H_n(X, \mathbb{Q})$ for every *n*. Hence, from the exactness of the sequence (5) we deduce that

(8)
$$\ker b^{\text{odd}} = 0 \iff \ker h^{\text{odd}} = 0 \iff h_*^X = 0$$

Theorem 2.4. If $(\Lambda V, \partial)$ is the Sullivan model of a given space X and $(\mathbb{L}(W), \delta)$ is its Quillen model, then for all n we have the following:

(9)
$$\Gamma_n = H^{n+2}(\Lambda V^{\le n-2}),$$

where Γ_n is defined as in (3).

Proof. Applying the exact functor $\operatorname{Hom}(\cdot, \mathbb{Q})$ to the exact sequence (2) we obtain

(10)
$$\cdots \leftarrow \operatorname{Hom}(W_{n+1}, \mathbb{Q}) \leftarrow \operatorname{Hom}(\Gamma_n, \mathbb{Q}) \leftarrow \operatorname{Hom}(H_n(\mathbb{L}(W)), \mathbb{Q}) \\ \leftarrow \operatorname{Hom}(W_n, \mathbb{Q}) \stackrel{b_n}{\leftarrow} \cdots .$$

Taking into account that by virtues of the Quillen and Sullivan models we have the following.

- Hom $(W_n, \mathbb{Q}) \cong H^{n+1}(\Lambda V)$ for all n.
- Hom $(H_n(\mathbb{L}(W)), \mathbb{Q}) \cong V^{n+1}$ for all n.
- All groups involved are vector spaces of finite dimensions.
 The two maps Hⁿ⁺¹(ΛV) → Vⁿ⁺¹ and Hom(W_n, Q) → Hom(H_n(L(W)), Q) appearing in (5) and (10) are the same morphism.

By comparing the sequences (5) and (10), we get (9). **Corollary 2.5.** If X is a given space, then

(11)
$$\Gamma_{n+1}(X) \cong H^{n+2}(X^{[n]}; \mathbb{Q})$$

as vector spaces for all n.

Proof. It suffices to apply the identifications (4), (7) and Theorem 2.4 to the Sullivan model and the Quillen model of the space X.

3. The main result

As it is stated in the introduction, a rationally elliptic space X is called an F_0 -space, if $H^{\text{odd}}(X; \mathbb{Q}) = 0$ or equivalently if $H^{\text{odd}}(\Lambda V) = 0$, where $(\Lambda V, \partial)$ is the Sullivan model of X (see [8], §32 for more details).

Let us consider the Whitehead exact sequence of $(\Lambda V, \partial)$ given in (5)

$$\cdots \to V^n \xrightarrow{b^n} H^{n+1}(\Lambda V^{\leq n-1}) \to H^{n+1}(\Lambda V) \to V^{n+1} \xrightarrow{b^{n+1}} \cdots$$

In order to simplify let us put

(12)
$$L^n = H^n(\Lambda V^{\le n-2})$$

for all n.

Proposition 3.1. Let $(\Lambda V, \partial)$ be an elliptic Sullivan algebra such that $V^2 \neq 0$. If b^{odd} is not injective, then $L^{odd} \neq 0$.

Proof. Assume that b^{2n-1} is not injective for some integer $n \ge 1$. Then there exists $v \in V^{2n-1}$ such that $b^{2n-1}(v) = 0$ and from the relation (6) there exists $q \in \Lambda V$ such that $\partial(v+q) = 0$. Therefore, if $v_2 \in V^2$, then $v_2(v+q)$ is decomposable cocycle of degree 2n + 1 providing a non-zero element in L^{2n+1} according to (12).

Corollary 3.2. Let X be a rationally elliptic space such that $H^2(X; \mathbb{Q}) \neq 0$. If $H^{2n+1}(X^{[2n-1]}; \mathbb{Q}) = 0$ for all n, then the rational Hurewicz homomorphism h_{odd}^X is trivial.

Proof. Let $(\Lambda V, \partial)$ be the Sullivan model of X. Note that because $H^2(X; \mathbb{Q}) \neq 0$ it follows that $V^2 \neq 0$. Using the identifications (7), the relation (12) and the hypothesis we get

(13)
$$L^{2n+1} = H^{2n+1}(X^{[2n-1]}; \mathbb{Q}) = 0$$

for all n. Next, the relation (8) and Proposition 3.1 imply that h_{odd}^X is trivial.

Proposition 3.3. Let $(\Lambda V, \partial)$ be an elliptic Sullivan algebra such that $V^2 \neq 0$. If $L^{\text{odd}} = 0$, then $H^{\text{odd}}(\Lambda V) = 0$.

Proof. Proposition 3.1 implies that b^{odd} is injective. Let us consider the Whitehead exact sequence of $(\Lambda V, \partial)$ given in (5)

$$\cdots \to V^{2n} \xrightarrow{b^{2n}} L^{2n+1} \to H^{2n+1}(\Lambda V) \to V^{2n+1} \xrightarrow{b^{2n+1}} \cdots$$

Since b^{2n+1} is injective and $L^{2n+1} = 0$, it follows that $H^{2n+1}(\Lambda V) = 0$ for all n.

Theorem 3.4. Let X be a rationally elliptic space such that $H^2(X; \mathbb{Q}) \neq 0$. If $H^{2n+1}(X^{[2n-1]}; \mathbb{Q}) = 0$ for all n, then X is an F_0 -space.

Proof. Let $(\Lambda V, \partial)$ be the Sullivan model of X. Note that because $H^2(X; \mathbb{Q}) \neq 0$ it follows that $V^2 \neq 0$. Now, if $H^{2n+1}(X^{[2n-1]}; \mathbb{Q}) = 0$ for all n, then from (13) we deduce that $L^{2n+1} = 0$ for all n. Applying Proposition 3.3 we derive that $H^{\text{odd}}(\Lambda V) = 0$ ensuring that X is an F_0 -space.

Theorem 3.5. Let X be a rationally elliptic space such that $H^2(X; \mathbb{Q}) \neq 0$. If $\Gamma_{2n}(X) = 0$ for all n, then X is an F_0 -space.

Proof. First, if $\Gamma_{2n}(X) = 0$, then apply Corollary 2.5 to get

$$\Gamma_{2n}(X) \cong H^{2n+1}(X^{[2n-1]}; \mathbb{Q}) = 0$$

for all n. Next, Theorem 3.4 ensures that X is an F_0 -space.

It worth noting that $\Gamma_{2n}(X) \subset \pi_{2n}(X^{2n}) \otimes \mathbb{Q}$ for all n (see (4)). Therefore, Theorem 3.5 implies the following result.

Corollary 3.6. Let X be a rationally elliptic space such that $H^2(X; \mathbb{Q}) \neq 0$. If $\pi_{2n}(X^{2n}) \otimes \mathbb{Q} = 0$ for all n, then X is an F_0 -space.

Acknowledgment. The author is deeply grateful to the referee for a careful reading of the article and for valuable suggestions which greatly improved the manuscript.

References

- M. Benkhalifa, Postnikov decomposition and the group of self-equivalences of a rationalized space, Homology Homotopy Appl. 19 (2017), no. 1, 209-224. https://doi.org/10. 4310/HHA.2017.v19.n1.a11
- [2] M. Benkhalifa, On the group of self-homotopy equivalences of an elliptic space, Proc. Amer. Math. Soc. 148 (2020), no. 6, 2695-2706. https://doi.org/10.1090/proc/14900
- [3] M. Benkhalifa, On the Euler-Poincaré characteristics of a simply connected rationally elliptic CW-complex, J. Homotopy Relat. Struct. 17 (2022), no. 2, 163–174. https:// doi.org/10.1007/s40062-022-00301-2
- M. Benkhalifa, On the group of self-homotopy equivalences of an almost formal space, Quaestiones Mathematicae (2022). https://doi.org/10.2989/16073606.2022.2044405
- [5] M. Benkhalifa, The effect of cell-attachment on the group of self-equivalences of an elliptic space, Michigan Math. J. 71 (2022), no. 2, 611–617.
- [6] M. Benkhalifa, The group of self-homotopy equivalences of a rational space cannot be a free abelian group, J. Math. Soc. Japan. https://doi.org/10.2969/jmsj/87158715
- [7] M. Benkhalifa and S. B. Smith, The effect of cell-attachment on the group of selfequivalences of an R-localized space, J. Homotopy Relat. Struct. 10 (2015), no. 3, 549–564. https://doi.org/10.1007/s40062-014-0076-5
- [8] Y. Félix, S. Halperin, and J.-C. Thomas, *Rational homotopy theory*, Graduate Texts in Mathematics, 205, Springer-Verlag, New York, 2001. https://doi.org/10.1007/978-1-4613-0105-9

Mahmoud Benkhalifa Department of Mathematics Faculty of Sciences University of Sharjah Sharjah, United Arab Emirates *Email address*: mbenkhalifa@sharjah.ac.ae