Browse > Article
http://dx.doi.org/10.5140/JASS.2022.39.1.11

Empirical Modeling of the Global Distribution of Magnetosonic Waves with Ambient Plasma Environment using Van Allen Probes  

Kim, Kyung-Chan (Department of Astronomy and Space Science, Chungbuk National University)
Publication Information
Journal of Astronomy and Space Sciences / v.39, no.1, 2022 , pp. 11-22 More about this Journal
Abstract
It is suggested that magnetosonic waves (also known as equatorial noise) can scatter radiation belt electrons in the Earth's magnetosphere. Therefore, it is important to understand the global distribution of these waves between the proton cyclotron frequency and the lower hybrid resonance frequency. In this study, we developed an empirical model for estimating the global distribution of magnetosonic wave amplitudes and wave normal angles. The model is based on the entire mission period (approximately 2012-2019) of observations of Van Allen Probes A and B as a function of the distance from the Earth (denoted by L*), magnetic local time (MLT), magnetic latitude (λ), and geomagnetic activity (denoted by the Kp index). In previous studies the wave distribution inside and outside the plasmasphere were separately investigated and modeled. Our model, on the other hand, identifies the wave distribution along with the ambient plasma environment-defined by the ratio of the plasma frequency (fpe) to the electron cyclotron frequency (fce)-without separately determining the wave distribution according to the plasmapause location. The model results show that, as Kp increases, the dayside wave amplitude in the equatorial region intensifies. It thereby propagates the intense region towards the wider MLT and inward to L* < 4. In contrast, the fpe/fce ratio decreases with increasing Kp for all regions. Nevertheless, the decreasing aspect differs between regions above and below L* = 4. This finding implies that the particle energy and pitch angle that magnetosonic waves can effectively scatter vary depending on the locations and geomagnetic activity. Our model agrees with the statistically observed wave distribution and ambient plasma environment with a coefficient of determination of > 0.9. The model is valid in all MLTs, 2 ≤ L* < 6, |λ| < 20°, and Kp ≤ 6.
Keywords
magnetosonic wave; equatorial noise; empirical model; ambient plasma environment; Van Allen Probes;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kurth WS, De Pascuale S, Faden JB, Kletzing CA, Hospodarsky GB, et al., Electron densities inferred from plasma wave spectra obtained by the Waves instrument on Van Allen Probes, J. Geophys. Res. Space Phys. 120, 904-914 (2015). https://doi.org/10.1002/2014JA020857   DOI
2 Goldstein J, Pascuale SD, Kletzing C, Kurth W, Genestreti KJ, et al., Simulation of Van Allen Probes plasmapause encounters, J. Geophys. Res. Space Phys. 119, 7464-7484 (2014). https://doi.org/10.1002/2014JA020252   DOI
3 Horne RB, Thorne RM, Glauert SA, Meredith NP, Pokhotelov D, et al., Electron acceleration in the Van Allen radiation belts by fast magnetosonic waves, Geophys. Res. Lett. 34, L17107 (2007). https://doi.org/10.1029/2007GL030267   DOI
4 Kasahara Y, Kenmochi H, Kimura I, Propagation characteristics of the ELF emissions observed by the satellite Akebono in the magnetic equatorial region, Radio Sci. 29, 751-767 (1994). https://doi.org/10.1029/94RS00445   DOI
5 Kim KC, Chen L, Modeling the storm time behavior of the magnetosonic waves using solar wind parameters, J. Geophys. Res. Space Phys. 121, 446-458 (2016). https://doi.org/10.1002/2015JA021716   DOI
6 Lei M, Xie L, Li J, Pu Z, Fu S, et al., The radiation belt electron scattering by magnetosonic wave: dependence on key parameters, J. Geophys. Res. Space Phys. 122, 12338-12352 (2017). https://doi.org/10.1002/2016JA023801   DOI
7 Li W, Ma Q, Thorne RM, Bortnik J, Kletzing CA, et al., Statistical properties of plasmaspheric hiss derived from Van Allen Probes data and their effects on radiation belt electron dynamics, J. Geophys. Res. Space Phys. 120, 3393-3405 (2015). https://doi.org/10.1002/2015JA021048   DOI
8 Ma Q, Li W, Thorne RM, Bortnik J, Kletzing CA, et al., Electron scattering by magnetosonic waves in the inner magnetosphere, J. Geophys. Res. Space Phys. 121, 274-285 (2016). https://doi.org/10.1002/2015JA021992   DOI
9 Meredith NP, Horne RB, Anderson RR, Survey of magnetosonic waves and proton ring distributions in the Earths inner magnetosphere, J. Geophys. Res. 113, A06213 (2008). https://doi.org/10.1029/2007JA012975   DOI
10 Yu J, Wang J, Cui J, Ring current proton scattering by low-frequency magnetosonic waves, Earth Planet. Phys. 3, 365-372 (2019). https://doi.org/10.26464/epp2019037   DOI
11 Yuan Z, Yao F, Yu X, Huang S, Ouyang Z, An automatic detection algorithm applied to fast magnetosonic waves with observations of the Van Allen Probes, J. Geophys. Res. Space Phys. 124, 3501-3511 (2019). https://doi.org/10.1029/2018JA026387   DOI
12 Fu S, Ni B, Li J, Zhou C, Gu X, et al., Interactions between magnetosonic waves and ring current protons: gyroaveraged test particle simulations, J. Geophys. Res. Space Phys. 121, 8537-8553 (2016). https://doi.org/10.1002/2016JA023117   DOI
13 Darrouzet F, De Keyser J, Decreau PME, El Lemdani-Mazouz F, Vallieres X, Statistical analysis of plasmaspheric plumes with Cluster/WHISPER observations, Ann. Geophys. 26, 2403-2417 (2008). https://doi.org/10.5194/angeo-26-2403-2008   DOI
14 Wang D, Shprits YY, Zhelavskaya IS, Agapitov OV, Drozdov AY, et al., Analytical chorus wave model derived from Van Allen Probe observations, J. Geophys. Res. Space Phys. 124, 1063-1084 (2019). https://doi.org/10.1029/2018JA026183   DOI
15 Cho J, Lee DY, Kim JH, Shin DK, Kim KC, et al., New model fit functions of the plasmapause location determined using THEMIS observations during the ascending phase of solar cycle 24, J. Geophys. Res. Space Phys. 120, 2877-2889 (2015). https://doi.org/10.1002/2015JA021030   DOI
16 Glauert SA, Horne RB, Meredith NP, Three-dimensional electron radiation belt simulations using the BAS radiation belt model with new diffusion models for chorus, plasmaspheric hiss, and lightning-generated whistlers, J. Geophys. Res. Space Phys. 119, 268-289 (2014). https://doi.org/10.1002/2013JA019281   DOI
17 Hrbackova Z, Santolik O, Nemec F, Macusova E, Cornilleau-Wehrlin N, Systematic analysis of occurrence of equatorial noise emissions using 10 years of data from the Cluster mission, J. Geophys. Res. Space Phys. 120, 1007-1021 (2015). https://doi.org/10.1002/2014JA020268   DOI
18 Kim KC, Shprits Y, Dependence of the amplitude of magnetosonic waves on the solar wind and AE index using Van Allen Probes, J. Geophys. Res. Space Phys. 122, 6022-6034 (2017). https://doi.org/10.1002/2017JA024094   DOI
19 Laakso H, Junginger H, Roux A, Schmidt R, de Villedary C, Magnetosonic waves above fc (H+) at geostationary orbit: GEOS 2 results, J. Geophys. Res. Space Phys. 95, 10609-10621 (1990). https://doi.org/10.1029/JA095iA07p10609   DOI
20 Kim KC, Shprits Y, Survey of the favorable conditions for magnetosonic wave excitation, J. Geophys. Res. Space Phys. 123, 400-413 (2018). https://doi.org/10.1002/2017JA024865   DOI
21 Ma Q, Li W, Thorne RM, Angelopoulos V, Global distribution of equatorial magnetosonic waves observed by THEMIS, Geophys. Res. Lett. 40, 1895-1901 (2013). https://doi.org/10.1002/grl.50434   DOI
22 Moldwin MB, Howard J, Sanny J, Bocchicchio JD, Rassoul HK, et al., Plasmaspheric plumes: CRRES observations of enhanced density beyond the plasmapause, J. Geophys. Res. 109, A05202 (2004). https://doi.org/10.1029/2003JA010320   DOI
23 Russell CT, Holzer RE, Smith EJ,OGO 3 observations of ELF noise in the magnetosphere: 2. the nature of the equatorial noise, J. Geophys. Res. 75, 755-768 (1970). https://doi.org/10.1029/JA075i004p00755   DOI
24 Santolik O, Parrot M, Lefeuvre F, Singular value decomposition methods for wave propagation analysis, Radio Sci. 38, 1010 (2003). https://doi.org/10.1029/2000RS002523   DOI
25 Santolik O, Pickett JS, Gurnett DA, Maksimovic M, Cornilleau-Wehrlin N, Spatiotemporal variability and propagation of equatorial noise observed by Cluster, J. Geophys. Res. 107, 1495 (2002). https://doi.org/10.1029/2001JA009159   DOI
26 Shprits YY, Runov A, Ni B, Gyro-resonant scattering of radiation belt electrons during the solar minimum by fast magnetosonic waves, J. Geophys. Res. Space Phys. 118, 648-652 (2013). https://doi.org/10.1002/jgra.50108   DOI
27 Shprits YY, Subbotin D, Ni B, Evolution of electron fluxes in the outer radiation belt computed with the VERB code, J. Geophys. Res. 114, A11209 (2009). https://doi.org/10.1029/2008JA013784   DOI
28 Xiao FL, Zong Q, Wang Y, He Z, Su Z, et al., Generation of proton aurora by magnetosonic waves, Sci. Rep. 4, 5190 (2014). https://doi.org/10.1038/srep05190   DOI
29 Tsyganenko NA, Sitnov MI, Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms, J. Geophys. Res. 110, A03208 (2005). https://doi.org/10.1029/2004JA010798   DOI
30 Usanova ME, Darrouzet F, Mann IR, Bortnik J, Statistical analysis of EMIC waves in plasmaspheric plumes from Cluster observations, J. Geophys. Res. Space Phys. 118, 4946-4951 (2013). https://doi.org/10.1002/jgra.50464   DOI