• Title/Summary/Keyword: Structural Weight

Search Result 2,484, Processing Time 0.024 seconds

A Numerical Study on Application of the Integrated Track System for a Magnetic Railway (자기부상철도 일체형 궤도시스템 적용을 위한 해석적 연구)

  • Ham, Junsu;Jung, Sub;Hwang, Won-Sup
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.40-45
    • /
    • 2015
  • The load of a maglev train, which is being considered a future transportation, is uniformly loaded on a levitated surface of a rail unlike a typical train because the maglev train is magnetically levitated and propelled. In addition, the driving performance is superior since the maglev train doesn't directly contact the railway. A integrated track system, to which a sleeper is installed toward a longitudinal direction instead of a perpendicular direction, is suggested, considering this loading characteristic. The longitudinal sleeper of this system is expected to contribute to stiffness increase of a bridge and weight-reduction of a girder. In this study, the structural characteristics of proposed and typical systems have been numerically compared and analyzed. In addition, the improvement of the integrated system has been proposed.

Influence of Load Limitation on the Roofspace Planning of Existing Buildings (하중제한이 기존건물의 옥상조경계획에 미치는 영향)

    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.2
    • /
    • pp.166-180
    • /
    • 1998
  • In a city where the greenery always lacks landscaping roofs of existing buildings offers a way to solve the problem. But the most serious problem that poses is the matter of load limit. At present most existing buildings have the loading capacity of 200 kg/$m^2$ or less on their roofs. If the natural soil is used the loading capacity is easily surpassed because it simply is too heavy. To alleviate this problem it is realized to introduce the light weight artificial soil. The specific gravity of light soil is 0.65 whereas the natural soil is 1.8 when wet. It is three times lighter than the natural soil, thus eases the burden to the roof. The next problem to be confronted is the plant species to plant. It is possible to plant trees but they soon outgrow the loading capacity by weighing 8 times heavier in 10 years. Therefore shrubs and perennials are suggested to be planted because they don't weigh much even when they reach the mature height. The last problem is the stress put on roofs by the weight of the users. By some unexpected event the crowd gathered on a weak roof can cause the structural damage or even the collapse of the roof. The avoid the possibility of collapse a plaza or big pocket should not be designed in a roof garden because they hold crowd. By following the suggested means the old roofs of existing buildings can turn into the urban oases in the sky.

  • PDF

Keyword Weight based Paragraph Extraction Algorithm (문단 가중치 분석 기반 본문 영역 선정 알고리즘)

  • Lee, Jongwon;Yu, Seongjong;Kim, Doan;Jung, Hoekyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.462-463
    • /
    • 2018
  • Traditional document analysis systems used word-based analysis using a morphological analyzer or TF-IDF technique. These systems have the advantage of being able to derive key keywords by calculating the weights of the keywords. On the other hand, it is not appropriate to analyze the contents of documents due to the structural limitations. To solve this problem, the proposed algorithm calculates the weights of the documents in the document and divides the paragraphs into areas. And we calculate the importance of the divided regions and let the user know the area with the most important paragraphs in the document. So, it is expected that the user will be provided with a service suitable for analyzing documents rather than using existing document analysis systems.

  • PDF

High-Performing Adhesive Bonding Fastening Technique For Automotive Body Structures

  • Symietz, Detlef;Lutz, Andreas
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.60-64
    • /
    • 2006
  • In modern vehicle construction the search for means of weight reduction, improving durability, increasing comfort and raising body stiffness are issues of priority to the design engineer. The intelligent usage of many materials such as high strength steel, light-alloys and plastics enables a significant vehicle weight reduction to be achieved. The classical joining techniques used in the automobile industry need to be newly-evaluated since they often do not present workable solutions for such mixed-material connections, for example aluminium/steel. Calculation/simulation methods have made progress as a key factor for broader and more cost-effective implementation of structural bonding. This will lead to reduction of spotwelds and accelerate the car development. A special focus of the paper is the use of high strength steel grades. It will be shown that adhesive bonding is a key tool for yielding the potential of advanced high strength steel for low gauging without compromising the stiffness. The latest status of adhesive development has been described. Improvements with physical strength and glass temperature as well as of process relevant properties are shown. Also the situation regarding occupational hygiene is treated, showing that by further spotweld point reduction the emission around the working area can be even lowered against the current praxis. High performing lightweight design cannot longer do without high performing crash durable adhesives.

  • PDF

Optimization and Structure Analysis of Brake Disc for Free-fall Winch (자유 낙하 윈치용 브레이크 디스크의 구조해석 및 최적설계)

  • Ku, Hyoun-Kon;Kim, Jin-Woo;Won, Cheon;Song, Jung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.55-61
    • /
    • 2012
  • The structure of winch brake disk was successfully designed and developed based on sizing optimization. In this research, static analysis was performed by commercial software ANSYS v12.0. To simulate the working process of disk brake, the real properties of materials and working conditions were considered. Based on the results of the static structural analysis, the existing designs of the brake discs were optimized. Among existing designs, there are three cases that have achieved an efficient light weight around 200g. As a result, the optimized weight of each case was 3.41kg, 3.42kg, and 3.44kg, respectively. Finally, through prototyping and performance testing, the stability of the optimized brake disc was verified. Although, this free-fall winch brake disk had been developed in design and evaluation techniques, more detailed plans for developing the disk brake structure were also proposed as a further study based on this research.

A Development of Statistical Model for Pavement Response Model (도로포장 반응모형에 대한 통계모형 개발)

  • Lee, Moon Sup;Park, Hee Mun;Kim, Boo Il;Heo, Tae-Young
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.5
    • /
    • pp.89-96
    • /
    • 2012
  • The Falling Weight Deflectormeter has been widely used in evaluating the structural adequacy of pavement structures. The deflections measured from the FWD are capable of estimating the stiffness of pavement layers and measuring the pavement responses in the pavement structure. The objective of paper is to develop the pavement response model using a partial least square regression technique based on the FWD deflection data. The partial least square regression method enables to solve the multicollinearity problem occurred in multiple regression model. It is also found that the pavement response model can be developed using the raw data when a partial least square regression was used.

Weight and topology optimization of outrigger-braced tall steel structures subjected to the wind loading using GA

  • Nouri, Farshid;Ashtari, Payam
    • Wind and Structures
    • /
    • v.20 no.4
    • /
    • pp.489-508
    • /
    • 2015
  • In this paper, a novel methodology is proposed to obtain optimum location of outriggers. The method utilizes genetic algorithm (GA) for shape and size optimization of outrigger-braced tall structures. In spite of previous studies (simplified methods), current study is based on exact modeling of the structure in a computer program developed on Matlab in conjunction with OpenSees. In addition to that, exact wind loading distribution is calculated in accordance with ASCE 7-10. This is novel since in previous studies wind loading distributions were assumed to be uniform or triangular. Also, a new penalty coefficient is proposed which is suitable for optimization of tall buildings. Newly proposed penalty coefficient improves the performance of GA and results in a faster convergence. Optimum location and number of outriggers is investigated. Also, contribution of factors like central core and outrigger rigidity is assessed by analyzing several design examples. According to the results of analysis, exact wind load distribution and modeling of all structural elements, yields optimum designs which are in contrast of simplified methods results. For taller frames significant increase of wind pressure changes the optimum location of outriggers obtained by simplified methods. Ratio of optimum location to the height of the structure for minimizing weight and satisfying serviceability constraints is not a fixed value. Ratio highly depends on height of the structure, core and outriggers stiffness and lateral wind loading distribution.

Experimental investigation of the large amplitude vibrations of a thin-walled column under self-weight

  • Goncalves, Paulo B.;Jurjo, Daniel Leonardo B.R.;Magluta, Carlos;Roitman, Ney
    • Structural Engineering and Mechanics
    • /
    • v.46 no.6
    • /
    • pp.869-886
    • /
    • 2013
  • This work presents an experimental methodology specially developed for the nonlinear large-amplitude free vibration analysis of a clamped-free thin-walled metal column under self-weight. The main contribution of this paper is related to the developed experimental methodology which is based on a remote sensing technique using a computer vision system that integrates, on-line, the digital image acquisition and its treatment through special image processing routines. The main importance of this methodology is that it performs large deflections measurements without making contact with the structure and thus, not introducing undesirable changes in its behavior, for instance, appreciable changes in mass and stiffness properties. This structure presents, in most cases, highly non-linear responses, which cannot be reproduced by conventional finite-element softwares due, mainly, to the simultaneous influence of geometric and inertial non-linearities. To capture the non-linearities associated with large amplitude vibration and be able to describe the buckling process, the structure is discretized as a sequence of jointed coupled elastic pendulums. The obtained numerical results are favorably compared with the experimental ones, in the pre- and post-buckling regimes.

Multi-objective optimization design for the multi-bubble pressure cabin in BWB underwater glider

  • He, Yanru;Song, Baowei;Dong, Huachao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.4
    • /
    • pp.439-449
    • /
    • 2018
  • In this paper, multi-objective optimization of a multi-bubble pressure cabin in the underwater glider with Blended-Wing-Body (BWB) is carried out using Kriging and the Non-dominated Sorting Genetic Algorithm (NSGA-II). Two objective functions are considered: buoyancy-weight ratio and internal volume. Multi-bubble pressure cabin has a strong compressive capacity, and makes full use of the fuselage space. Parametric modeling of the multi-bubble pressure cabin structure is automatic generated using UG secondary development. Finite Element Analysis (FEA) is employed to study the structural performance using the commercial software ANSYS. The weight of the primary structure is determined from the volume of the Finite Element Structure (FES). The stress limit is taken into account as the constraint condition. Finally, Technique for Ordering Preferences by Similarity to Ideal Solution (TOPSIS) method is used to find some trade-off optimum design points from all non-dominated optimum design points represented by the Pareto fronts. The best solution is compared with the initial design results to prove the efficiency and applicability of this optimization method.

Shape Optimization of Truss Structures with Multiobjective Function by α -Cut Approach (α -절단법에 의한 다목적함수를 갖는 트러스 구조물의 형상최적화)

  • Yang, Chang Yong;Lee, Gyu Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.457-465
    • /
    • 1997
  • The Shape optimization makes it possible to reduce the weight of structure and cost then member sizing optimization. A vast amount of imprecise information is existed in constraints of the optimum design. It is very difficult and sometimes confusing to describe and to deal with the several criteria which contain fuzzy degrees of relatives importance. This paper proposed weighting strategies in the multiobjective shape optimization of fuzzy structural system by ${\alpha}$-cut approach. The algorithm in this research is numerically tested for 2-bar truss structure. The result show that. the user can choose the one optimum solution in practices as obtaining the optimum solutions according to the ${\alpha}$-cut approach, weight of volume and displacement.

  • PDF