Browse > Article
http://dx.doi.org/10.1016/j.ijnaoe.2017.08.007

Multi-objective optimization design for the multi-bubble pressure cabin in BWB underwater glider  

He, Yanru (School of Marine Science and Technology, Northwestern Polytechnical University)
Song, Baowei (School of Marine Science and Technology, Northwestern Polytechnical University)
Dong, Huachao (School of Marine Science and Technology, Northwestern Polytechnical University)
Publication Information
International Journal of Naval Architecture and Ocean Engineering / v.10, no.4, 2018 , pp. 439-449 More about this Journal
Abstract
In this paper, multi-objective optimization of a multi-bubble pressure cabin in the underwater glider with Blended-Wing-Body (BWB) is carried out using Kriging and the Non-dominated Sorting Genetic Algorithm (NSGA-II). Two objective functions are considered: buoyancy-weight ratio and internal volume. Multi-bubble pressure cabin has a strong compressive capacity, and makes full use of the fuselage space. Parametric modeling of the multi-bubble pressure cabin structure is automatic generated using UG secondary development. Finite Element Analysis (FEA) is employed to study the structural performance using the commercial software ANSYS. The weight of the primary structure is determined from the volume of the Finite Element Structure (FES). The stress limit is taken into account as the constraint condition. Finally, Technique for Ordering Preferences by Similarity to Ideal Solution (TOPSIS) method is used to find some trade-off optimum design points from all non-dominated optimum design points represented by the Pareto fronts. The best solution is compared with the initial design results to prove the efficiency and applicability of this optimization method.
Keywords
Multi-objective optimization; Multi-bubble pressure cabin; Finite element analysis; Kriging; NSGA-II; TOPSIS;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Rajagopal, S., Ganguli, R., 2008. Conceptual design of UAV using Kriging based multi-objective genetic algorithm. Aeronautical J. 112, 653-662.   DOI
2 Opricovic, S., Tzeng, G.-H., 2004. Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur. J. Operational Res. 156, 445-455.   DOI
3 Queipo,N.V.,Haftka,R.T.,Wei, S.,Goel,T.,Vaidyanathan, R., Tucker, P.K., 2005. Surrogate-based analysis and optimization. Prog. Aerosp. Sci. 41, 1-28.   DOI
4 Mukhopadhyay, V., Sobieszczanskisobieski, J., Kosaka, I., Quinn, G., Vanderpaats, G.N., 2012. Analysis, design, and optimization of noncylindrical fuselage for blended-wing-body vehicle. J. Aircr. 41, 925-930.
5 Mukhopadhyay, V., 1996. Structural Concepts Study of Non-circular Fuselage Configurations.
6 Javaid, M.Y., Ovinis, M., Nagarajan, T., Hashim, F.B., 2014. Underwater Gliders: a Review. MATEC Web of Conferences. EDP Sciences, 02020.
7 Jenkins, S.A., Humphreys, D.E., Sherman, J., Osse, J., Jones, C., Leonard, N., Graver, J., Bachmayer, R., Clem, T., Carroll, P., 2012. Underwater Glider System Study. Scripps Institution of Oceanography.
8 Jie, H., Wu, Y., Zhao, J., Ding, J., Liangliang, 2016. An efficient multiobjective PSO algorithm assisted by Kriging metamodel for expensive black-box problems. J. Glob. Optim. 1-25.
9 Jin, R., Chen, W., Sudjianto, A., 2005. An efficient algorithm for constructing optimal design of computer experiments. J. Stat. Plan. Inference 134, 268-287.   DOI
10 Li, M., Li, G., Azarm, S., 2008. A kriging metamodel assisted multi-objective genetic algorithm for design optimization. J. Mech. Des. 130, 031401.   DOI
11 Liao, X., Li, Q., Yang, X., Li, W., Zhang, W., 2008. A two-stage multiobjective optimisation of vehicle crashworthiness under frontal impact. Int. J. Crashworthiness 13, 279-288.   DOI
12 Liebeck, R., 2002. Design of the Blended-Wing-body Subsonic Transport.
13 Mirjalili, S., 2015. The ant lion optimizer. Adv. Eng. Softw. 83, 80-98.   DOI
14 Geuskens, F., Koussios, S., Bergsma, O.K., Beukers, A., 2008. Non-cylindrical Pressure Fuselages for Future Aircraft.
15 Gu, X., Sun, G., Li, G., Huang, X., Li, Y., Li, Q., 2013. Multiobjective optimization design for vehicle occupant restraint system under frontal impact. Struct. Multidiscip. Optim. 47, 465-477.   DOI
16 Haddad, O.B., Afshar, A., Marino, M.A., 2006. Honey-bees mating optimization (HBMO) algorithm: a new heuristic approach for water resources optimization. Water Resour. Manag. 20, 661-680.   DOI
17 Hildebrand, J.A., Spain, G.L.D., Roch, M.A., Porter, M.B., 2010. Glider-based Passive Acoustic Monitoring Techniques in the Southern California Region.
18 Jalali, M., Afshar, A., Marino, M., 2007. Multi-colony ant algorithm for continuous multi-reservoir operation optimization problem. Water Resour. Manag. 21, 1429-1447.   DOI
19 Iman, R.L., 2008. Latin hypercube sampling. Encycl. Quantitative Risk Analysis Assess. 408-411.
20 Chen, G., Han, X., Liu, G., Jiang, C., Zhao, Z., 2012. An efficient multiobjective optimization method for black-box functions using sequential approximate technique. Appl. Soft Comput. 12, 14-27.   DOI
21 Chen, S., Shi, T., Wang, D., Chen, J., 2015. Multi-objective optimization of the vehicle ride comfort based on Kriging approximate model and NSGA-II. J. Mech. Sci. Technol. 29, 1007-1018.   DOI
22 Coello, C.C., 2006. Evolutionary multi-objective optimization: a historical view of the field. IEEE Comput. Intell. Mag. 1, 28-36.   DOI
23 Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182-197.   DOI
24 Fallah-Mehdipour, E., Haddad, O.B., Mari, O.M., 2011. MOPSO algorithm and its application in multipurpose multireservoir operations. J. Hydroinformatics 13, 794-811.   DOI
25 Forrester, A.I.J., Keane, A.J., 2009. Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 45, 50-79.   DOI
26 Friedman, J.H., 1991. Multivariate adaptive regression splines. Ann. Statistics 1-67.
27 Geuskens, F., Bergsma, O.K., Koussios, S., Beukers, A., 2011. Analysis of conformable pressure vessels: introducing the multibubble. Aiaa J. 49, 1683-1692.   DOI
28 Annaratone, D., 2007. Pressure Vessel Design. Springer.
29 Saijal, K., Ganguli, R., Viswamurthy, S., 2011. Optimization of helicopter rotor using polynomial and neural network metamodels. J. Aircr. 48, 553-566.   DOI
30 Chang, F.J., Chen, L., Chang, L.C., 2005. Optimizing the reservoir operating rule curves by genetic algorithms. Hydrol. Process. 19, 2277-2289.   DOI
31 Sun, G., Li, G., Gong, Z., He, G., Li, Q., 2011. Radial basis functional model for multi-objective sheet metal forming optimization. Eng. Optim. 43, 1351-1366.   DOI
32 Viswamurthy, S., Ganguli, R., 2007. Optimal placement of trailing-edge flaps for helicopter vibration reduction using response surface methods. Eng. Optim. 39, 185-202.   DOI
33 Vos, R., Geuskens, F., Hoogreef, M.F.M., 2012. A new structural design concept for blended wing body cabins.
34 Wang, H., Zhu, X., Du, Z., 2010. Aerodynamic optimization for low pressure turbine exhaust hood using Kriging surrogate model. Int. Commun. Heat Mass Transf. 37, 998-1003.   DOI
35 Yang, H., Chan, L., King, I., 2002. Support vector machine regression for volatile stock market prediction. In: International Conference on Intelligent Data Engineering and Automated Learning. Springer, pp. 391-396.
36 Yang, R., Wang, N., Tho, C., Bobineau, J., Wang, B., 2005. Metamodeling development for vehicle frontal impact simulation. J. Mech. Des. 127, 1014-1020.   DOI
37 Mukhopadhyay, V., Welstead, J., Quinlan, J., Guynn, M.D., 2016. Structural Configuration Systems Analysis for Advanced Aircraft Fuselage Concepts.
38 Myers, R.H., Montgomery, D.C., Anderson-Cook, C.M., 2016. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. John Wiley & Sons.