• Title/Summary/Keyword: Structural Weight

Search Result 2,484, Processing Time 0.029 seconds

Per-deuteration and NMR experiments for the backbone assignment of 62 kDa protein, Hsp31

  • Kim, Jihong;Choi, Dongwook;Park, Chankyu;Ryu, Kyoung-Seok
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.3
    • /
    • pp.112-118
    • /
    • 2015
  • Hsp31 protein is one of the members of DJ-1 superfamily proteins and has a dimeric structure of which molecular weight (MW) is 62 kDa. The mutation of DJ-1 is closely related to early onset of Parkinson's disease. Hsp31 displays $Zn^{+2}$-binding activity and was first reported to be a holding chaperone in E. coli. Its additional glyoxalase III active has recently been characterized. Moreover, an incubation at $60^{\circ}C$ induces Hsp31 protein to form a high MW oligomer (HMW) in vitro, which accomplishes an elevated holding chaperone activity. The NMR technique is elegant method to probe any local or global structural change of a protein in responses to environmental stresses (heat, pH, and metal). Although the presence of the backbone chemical shifts (bbCSs) is a prerequisite for detailed NMR analyses of the structural changes, general HSQC-based triple resonance experiments could not be used for 62 kDa Hsp31 protein. Here, we prepared the per-deuterated Hsp31 and performed the TROSY-based triple resonance experiments for the bbCSs assignment. Here, detailed processes of per-deuteration and the NMR experiments are described for other similar NMR approaches.

Development of Environment-Friendly Demolition Methods of RC Pier (콘크리트 교각의 친환경적 해체공법 개발)

  • Lee, Chang-Soo;Kwon, Jae-Ken;Chung, Bong-Jo;Kim, Tae-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.97-105
    • /
    • 2004
  • As modern society has been progressed, the demolition method of concrete structure that satisfy the condition of safety, economic efficiency, and environment-friendliness is required. This study investigated problems of existing demolition methods and developed modified method minimizing cooling water and sludge for demolition job. It was also verified the validity of this method based on the finite element methods. A analysis parameters as a number, depth and size of boring, and self weight were introduced for this study, and gave optimal condition for the demolition job and analysis.

PROCESS OF DESIGNING BODY STRUCTURES FOR THE REDUCTION OF REAR SEAT NOISE IN PASSENGER CAR

  • Kim, K.C.;Kim, C.M.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.67-73
    • /
    • 2007
  • This study analyzes the interior noise that is generated during acceleration of a passenger car in terms of car body structure and panel contribution. According to the transfer method, interior noise is classified into structure-borne noise and air-borne noise. Structure-borne noise is generated when the engine's vibration energy, an excitation source, is transferred to the car body through the engine mount and the driving system and the panel of the car body vibrates. When structure-borne noise resonates in the acoustic cavity of the car interior, acute booming noise is generated. This study describes plans for improving the car body structure and the panel form through a cause analysis of frequency ranges where the sound pressure level of the rear seat relative to the front seat is high. To this end, an analysis of the correlation between body attachment stiffness and acoustic sensitivity as well as a panel sensitive component analysis were conducted through a structural sound field coupled analysis. Through this study, via research on improving the car body structure in terms of reducing rear seat noise, stable performance improvement and light weight design before the proto-car stage can be realized. Reduction of the development period and test car stage is also anticipated.

An Analytical Study on the Behavior of Steel Frames with Semi-Rigidity of Beam-to-Column Connections (반강접 접합부를 갖는 강골조의 거동에 대한 해석적 연구)

  • Kim, Jong Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.551-559
    • /
    • 2003
  • In steel frames, the analysis and design techniques are based on either idealized fixed or pinned connections. In this case, it has the advantage that the structural analysis and the design procedure were simplified, but there could be given different results of analysis between the real steel frame connections and the idealized fixed and pinned connection. This is because the real connections would be analyzed by semi-rigid, and have some transfer of moment and rotational constraint about the loads. In this study, structural analysis program with considered connections that have joint rigidity of fixed, pinned and semi-rigid, was developed. Then, the effects of joint rigidity on strength and displacement. in steel frames subjected to lateral forces and axial forces, were investigate, and the results were compared with those of the Midas Gen. w program.

Meroparamycin Production by Newly Isolated Streptomyces sp. Strain MAR01: Taxonomy, Fermentation, Purification and Structural Elucidation

  • El-Naggar Moustafa Y.;El-Assar Samy A.;Abdul-Gawad Sahar M.
    • Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.432-438
    • /
    • 2006
  • Twelve actinomycete strains were isolated from Egyptian soil. The isolated actinomycete strains were then screened with regard to their potential to generate antibiotics. The most potent of the producer strains was selected and identified. The cultural and physiological characteristics of the strain identified. the strain as a member of the genus Streptomyces. The nucleotide sequence of the 16S rRNA gene (1.5kb) of the most potent strain evidenced a 99% similarity with Streptomyces spp. and S. aureofaciens 16S rRNA genes, and the isolated strain was ultimately identified as Streptomyces sp. MAR01. The extraction of the fermentation broth of this strain resulted in the isolation of one major compound, which was active in vitro against gram-positive, gram-negative representatives and Candida albicans. The chemical structure of this bioactive compound was elucidated based on the spectroscopic data obtained from the application of MS, IR, UV, $^1H$ NMR, $^{13}C$ NMR, and elemental analysis techniques. Via comparison to the reference data in the relevant literature and in the database search, this antibiotic, which had a molecular formula of $C_{19}H_{29}NO_2$ and a molecular weight of 303.44, was determined to differ from those produced by this genus as well as the available known antibiotics. Therefore, this antibiotic was designated Meroparamycin.

A Study on the degradation mechanism of PAN-LiCLO$_4$ Polymer Electrolyte EC windows (PAN-LIClO$_4$ 계 고분자전해질 EC창의 열화 기구에 관한 연구)

  • 김용혁;김형선;조원일;조병원;윤경석;박인철
    • Journal of Surface Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.223-230
    • /
    • 1997
  • Tungsten oxide and nickel oxide thin films were deposited onto ITO(Indium Tin Oxide) transparent glass by the E-beam evaporation and were used as a cathode and an anode for the EC(Electrochromic) smart window, respectively. Stoichiometric structures of the deposited films were investigated by the implementation of XPS(X-ray Photoelectron Spectroscopy) analysis and the results were $WO_{2.42}$ and $NiO_{0.44}$. This oxygen deficincy might affect affect the transparency of the thin films. The electrolyte for the EC smart windows was PAN-$LiCIO_4$ conducting polymer. EC(Ethylene Carbonate)and PC(Propylene Carbonate) were added as plasticizer to enhance ion conductivity. When the weight ratio of the EC : PC was 3 : 1, transmission difference and cycle life performance were tested. Polymer EC windows showed 40% $\Delta$T at 1.5V operating volage for 3,200 cycles. Structural degradation was observed by the SIMS(Secondary Ion Mass Spectroscopy) analysis and it was confirmed that structural degradation of polymer caused by the solvent evaporation was the main cause to degrade EC smart windows.

  • PDF

A Study on Strengthening of PSC Beam by Fatigue Experiment (피로 실험에 의한 PSC 부재의 성능개선기법에 관한 연구)

  • Kim, Hyun-Ho;Song, Jae-Pil;Kim, Ki-Bong;Chung, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.165-172
    • /
    • 2003
  • The fatigue problem of Prestressed Concrete(PSC) bridges are more serious than the other type of concrete bridges, because the cross sectional area and self weight of PSC bridges are smaller. The endurance of strengthening methods for PSC bridges are tested in this study. Glass fiber sheeting and external post-tensioning methods were applied. 1/5 scale PSC beams were made for fatigue test, same as static test. The range of repeated load is from 10% to 80% of yielding load with sine curve. The experimental results show that the failure cycle of strengthened members are increased compare to non-strengthened members. The members strengthened with glass fiber show better enhancement in fatigue problem than the members strengthened with external post-tensioning method, though the adhesion of glass fiber and concrete is failed, as increase of crack. With these experimental results, it can be said that the strengthening methods used in this study are efficient at extending the life time of aged PSC bridges.

Chemical and Micro-Structural Changes in Glass-Like Carbon during High Temperature Heat Treatment

  • Lim, Yun-Soo;Kim, Hee-Seok;Kim, Myung-Soo;Cho, Nam-Hee;Sahn Nahm
    • Macromolecular Research
    • /
    • v.11 no.2
    • /
    • pp.122-127
    • /
    • 2003
  • A glass-like carbon was fabricated using furan resin. The influence of heat treatment temperature during fabrication process on the chemical and micro-structural changes was studied by various analytical and spectroscopic methods including TGA, FT-IR, CHN, TEM and XRD. The chemical resistance properties of the fabricated glass-like carbon were also investigated. It has been found that the heat-treated samples at higher temperature up to 2600 $^{\circ}C$ in $N_2$ atmosphere had little weight loss, small amounts of functional groups, and high carbon content. The fabricated glass-like carbons upon heat treatment at 2600 $^{\circ}C$ showed an amorphous stage without any grain growth and/or reconstruction of structure. The glass-like carbon had much better chemical resistance than the artificial graphite, and exhibited a high chemical resistance due to its low surface areas, minimum impurities, and low graphite crystallites.

System Optimization of Orthotropic Steel-Deck Bridges by Load and Resistance Factor Design (LRFD에 의한 강상판형교의 시스템 최적설계)

  • 조효남;민대홍;김현우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.262-271
    • /
    • 1998
  • Recent, more and more steel deck bridges are adopted for the design of long span bridges and the upgrading of existing concrete deck bridges, mainly because of reduced self weight, higher stiffness and efficient erection compared to concrete decks. The main objective of this study is to propose on formulation of the design optimizations to develop an optimal desist program required for optimum desist for orthotropic steel-deck bridges. The objective function of the optimization is formulated as a minimum initial cost design problem. The behavior and design constraints are formulated based on the ASD and LRFD criteria of the Korean Bridge Design Code(1996). The optimum design program developed in this study consists of two steps. In the first step the system optimization of the steel box girder bridges is carried out. And in the second step the program provided the optimum design of the orthotropic steel-deck with close ribs. In the optimal design program the analysis module for the deck optimization is based on the Pelican Esslinger method. The optimizer module of the program utilizes the ADS(Automated Desist Synthesis) routines using the optimization techniques fuor constrained optimization. From the results of real application examples, The cost effectiveness of optimum orthotropic steel-deck bridges designs based on both ASD and LRFD methods is investigated by comparing the results with those of conventional designs, and it may be concluded that the design developed in this study seems efficient and robust for the optimization of orthotropic steel-deck bridges

  • PDF

Joint Tolerance Design by Minimum Sensitivity Theorem (최소민감도이론에 의한 조인트 부재의 공차설계)

  • 임오강;류재봉;박배준;이병우
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.161-170
    • /
    • 1998
  • A general formulation of the long cylinder tolerance design for the joint structure is here presented. The aim of this paper is to calculate the tolerance of joint by defining tolerance as a kind of uncertainty and to obtain the robustness of the joint structure. It is formulated on the bases of the minimum sensitivity theorem. The objective function is the tolerance sensitivity for the Von-Mises stress. It also took into full account the stress, displacement and weight constraints. PLBA(Pshenichny-Lim-Belegundu-Arora) algorithm is used to solve the constrained nonlinear optimization problem. The finite element analysis is performed with CST(Constant-Strain-Triangle) axisymmetric element. Sensitivities for design variables are calculated by the direct differentiation method. The numerical result is presented for the cylindrical structure where the joint tolerance is treated as random variables.

  • PDF