Browse > Article
http://dx.doi.org/10.6564/JKMRS.2015.19.3.112

Per-deuteration and NMR experiments for the backbone assignment of 62 kDa protein, Hsp31  

Kim, Jihong (Protein Structure Group, Korea Basic Science Institute)
Choi, Dongwook (Protein Structure Group, Korea Basic Science Institute)
Park, Chankyu (Department of Biological Science, Korea Advanced Institute of Science and Technology)
Ryu, Kyoung-Seok (Protein Structure Group, Korea Basic Science Institute)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.19, no.3, 2015 , pp. 112-118 More about this Journal
Abstract
Hsp31 protein is one of the members of DJ-1 superfamily proteins and has a dimeric structure of which molecular weight (MW) is 62 kDa. The mutation of DJ-1 is closely related to early onset of Parkinson's disease. Hsp31 displays $Zn^{+2}$-binding activity and was first reported to be a holding chaperone in E. coli. Its additional glyoxalase III active has recently been characterized. Moreover, an incubation at $60^{\circ}C$ induces Hsp31 protein to form a high MW oligomer (HMW) in vitro, which accomplishes an elevated holding chaperone activity. The NMR technique is elegant method to probe any local or global structural change of a protein in responses to environmental stresses (heat, pH, and metal). Although the presence of the backbone chemical shifts (bbCSs) is a prerequisite for detailed NMR analyses of the structural changes, general HSQC-based triple resonance experiments could not be used for 62 kDa Hsp31 protein. Here, we prepared the per-deuterated Hsp31 and performed the TROSY-based triple resonance experiments for the bbCSs assignment. Here, detailed processes of per-deuteration and the NMR experiments are described for other similar NMR approaches.
Keywords
Backbone chemical shift assignment; Hsp31; NMR; Per-deuteration; TROSY;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 H. Kim, I. Lee, J. Han, H. K. Cheong, E. H. Kim, and W. Lee, J. Kor. Mag. Reson. Soc. 19, 83 (2015)   DOI
2 J. Fiaux, E. B. Bertelsen, A. L. Horwich, and K. Wuthrich, J. Biomol. NMR. 29, 289 (2004)   DOI
3 V. Tugarinov, V. Kanelis, and L. E. Kay, Nat. Protoc. 1, 749 (2006)   DOI
4 M. Jansson, Y. C. Li, L. Jendeberg, S. Anderson, G. T. Montelione, and B. Nilsson, J. Biomol. NMR. 7, 131 (1996)
5 F. W. Studier, Protein Expr. Purif. 41, 207 (2005)   DOI
6 F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer, and A. Bax, J. Biomol. NMR. 6, 277 (1995)
7 T. D. Goddard and D. G. Kneller, Sparky 3, University of California, SanFransisco, CA.
8 S. C. Andrews, A. K. Robinson, and F. Rodriguez-Quinones, FEMS Microbiol. Rev. 27, 215 (2003)   DOI
9 S. Banerjee, S. Paul, L. T. Nguyen, B. C. Chu, and H. J. Vogel, Metallomics (2016)
10 K. O. Lee, and J. Y. Suh, J. Kor. Mag. Reson. Soc. 19, 42 (2015)   DOI
11 H. N. Moseley, D. Monleon, and G. T. Montelione, Methods Enzymol. 339, 91 (2001)   DOI
12 A. Bahrami, A. H. Assadi, J. L. Markley, and H. R. Eghbalnia, PLoS Comput. Biol. 5, e1000307 (2009)   DOI
13 C. A. MacRaild, and R. S. Norton, J. Biomol. NMR. 58, 155 (2014)   DOI
14 Y. Shen, and A. Bax, J. Biomol. NMR. 48, 13 (2010)   DOI
15 B. Han, Y. Liu, S. W. Ginzinger, and D. S. Wishart, J. Biomol. NMR. 50, 43 (2011)   DOI
16 Y. S. Choi, E. H. Kim, and K. S. Ryu, J. Anal. Sci. Technol. 6, 1 (2015)   DOI
17 M. Mujacic, and F. Baneyx, Mol. Microbiol. 60, 1576 (2006)   DOI
18 B. D. Eisenhardt, Biomol. Concepts 4, 583 (2013)
19 K. Niforou, C. Cheimonidou, and I.P. Trougakos, Redox Biol. 2, 323 (2014)   DOI
20 M. Mujacic, M. W. Bader, and F. Baneyx, Mol. Microbiol. 51, 849 (2004)
21 A. Battesti, N. Majdalani, and S. Gottesman, Annu. Rev. Microbiol. 65, 189 (2011)   DOI
22 M. Mujacic, and F. Baneyx, Appl. Environ. Microbiol. 73, 1014 (2007)   DOI
23 Y. Wei, D. Ringe, M. A. Wilson, and M. J. Ondrechen, PLoS Comput. Biol. 3, e10 (2007)   DOI
24 P. M. Quigley, K. Korotkov, F. Baneyx, and W. G. Hol, Proc. Natl. Acad. Sci.U.S.A. 100, 3137 (2003)   DOI
25 D. Choi, J. Kim, S. Ha, K. Kwon, E. H. Kim, H. Y. Lee, K. S. Ryu, and C. Park, FEBS J. 281, 5447 (2014)   DOI
26 K. C. Giese, and E. Vierling, J. Biol. Chem. 277, 46310 (2002)   DOI
27 E. Hilario, F. J. Martin, M. C. Bertolini, and L. Fan, J. Mol. Biol. 408, 74 (2011)   DOI
28 D. Choi, K. S. Ryu, and C. Park, Biochim. Biophys. Acta. 1834, 621 (2013)   DOI
29 K. Bankapalli, S. Saladi, S. S. Awadia, A. V. Goswami, M. Samaddar, and P. D'Silva, J. Biol. Chem. 290, 26491 (2015)   DOI
30 K. P. Subedi, D. Choi, I. Kim, B. Min, and C. Park, Mol. Microbiol. 81, 926 (2011)   DOI
31 Y. Zhao, D. Liu, W. D. Kaluarachchi, H. D. Bellamy, M. A. White, and R. O. Fox, Protein Sci. 12, 2303 (2003)
32 A. Biswas, and K. P. Das, Biochemistry 47, 804 (2008)   DOI