• Title/Summary/Keyword: Stripping process

Search Result 160, Processing Time 0.023 seconds

Green Photoresist Stripping Process with the Influence of Free Surface from Dip Withdrawal (Dip 추출에서 유체 표면의 영향을 고려한 친환경 포토레지스트 박리공정)

  • Kim, Joon Hyun;Kim, Seung Hyun;Jeong, Byung Hyun;Joo, Gi-Tae;Kim, Young Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.14-20
    • /
    • 2016
  • This paper describes a green stripping process to effectively strip the remaining DFR layer on a non-alkali-based ITO glass surface after an etching process. A stripper, water-soluble amine compound, is used to investigate the characteristics of stripping ability and to suggest a valid method for the green process. Increasing the composition (5-30% concentration) of the ethanol amine-based stripper was found to greatly reduce the stripping time applied in the dipping method. The composition (30%) achieved an excellent stripping effect and free-residue impurities. Additionally, it was possible to obtain the effect of stripping in a way to sustain the release before generating DFR sludge from the ITO glass surface by using dipping condition (stripping time) in the composition. An Additional stripping process (buffering) out of dipping can realize productivity improvement and cost reduction because of the higher proportion of re-use of the stripping solution used in the DFR removal step.

Removal of High Strength Nitrogen in Dyeing Wastewater by Decomposition-Air Stripping Process (분해탈기법에 의한 염색폐수 중의 고농도 질소 제거에 관한 연구)

  • Cho, Byeung-Rak
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.213-218
    • /
    • 2002
  • Total nitrogen is a major pollutant which mostly causes eutrophication and red tide. Wastewater effluent from printing of cotton-viscose rayon containing high concentrations of total nitrogen can not be effectively treated with a typical biological treatment process. This paper provides a new treatment process and experimental results for the removal of high strength nitrogen from dyeing wastewater. The optimum conditions of air stripping for the removal of total nitrogen include around pH 12, temperature $60^{\circ}C$ with 60 minutes of stripping time. In case of a filtration-air stripping process, an initial level ($500mg/{\ell}$) of total nitrogen was significantly reduced to below $60mg/{\ell}$. Deconite was synthesised for further decomposition of organic nitrogen. Thus, a filtration-decomposition-air stripping process was possibly achieved, by which a high level ($900mg/{\ell}$) of total nitrogen was effectively removed to below $60mg/{\ell}$ P. Finally, a continuous new process for the removal of total nitrogen is proposed and confirmed, based on batch experimental results, and its process validity is further discussed throughout.

  • PDF

An Efficient Photoresist Stripping Process on the ITO Surface Using the Dipping Method (딥핑 방식을 이용한 ITO 표면의 효율적인 포토레지스트 박리공정)

  • Kim, Joon Hyun;Sim, Jae Myung;Joo, Gi-Tae;Kim, Young Sung;Jeong, Byung Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.4
    • /
    • pp.281-289
    • /
    • 2016
  • Agitation is a secondary process used to increase the PR stripping force on an ITO-glass surface; it is an efficient approach to stripping during production. It activates the stripper to chemically penetrate the PR layer and assists by breaking down the physical bonding forces at the surface. In this study, different stripping tests were conducted by varying the dipping time, the composition, the strip temperature, and the stripper concentration. Optimal PR strip conditions were estimated by using comparative visual inspection of stripped sample surfaces. The stripping process was affected by changes in the moving speeds and the sample positions. It was confirmed that the stripping capability improved at a dilute stripper ratio of 20-40% and a strip temperature of $30-40^{\circ}C$ and within 60 s of strip time.

The Air-stripping Process Conjugated with the Ultrasonic Treatment to Remove TOC in Groundwater around the LPG Underground Storage Cavern (탈기법과 초음파 처리법을 연계한 LPG 지하공동저장소 주변 오염지하수 내 TOC 제거)

  • Han, Yikyeong;Jun, Seongchun;Kim, Danu;Jeon, Soyoung;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.511-519
    • /
    • 2022
  • In order to develop an air-stripping based remediation process to remove the TOC (Total Organic Carbon) in groundwater around the underground LPG storage cavern, the laboratory scale experiments at various conditions (change of air injection volume and temperature, the application of ultrasonic treatment, etc.) for two types of groundwater (initial TOC concentration of 608 mg/L and 153 mg/L, respectively). From results of experiment, as the air injection rate for stripping into groundwater increased from 2 L/min to 11 L/min and as the air-stripping time increased from 1 hour to 24 hour, the TOC removal efficiency of air-stripping increased. However, the TOC concentration of treated groundwater was higher than the discharge tolerance limit (100 mg/L) even after 24 hour stripping at the maximum air injection rate of 11 L/min. The main compounds of the TOC in groundwater were identified as methanol and propane and the long stripping time (more than 24 hour) was needed to separate the methanol from groundwater because of the affinity between water and methanol. At 20℃ and 4 L/min of air injection, the TOC removal efficiency increased to 59.1% after 24 hour air-stripping. When the temperature of groundwater increased to 30℃ and 40℃, the TOC removal efficiency increased up to 80.0% and 82.8%, suggesting that more than 24 hour air-stripping at 40℃ is needed to lower the TOC concentration to below 100 mg/L and the additional TOC removal process as well as the air-stripping is necessary. When the temperature increased to 60℃ and the ultrasonic treatment was conjugated with the air-stripping, the TOC removal efficiency increased to 87.8% within 5 hour stripping and the final TOC concentration (72.4 mg/L) was satisfied with the TOC discharge tolerance limit. The TOC removal efficiency for groundwater having low TOC concentration (153 mg/L) also showed similar removal efficiency of 89.7% (the final TOC concentration: 18.9 mg/L). Results in this study supported that the air-stripping conjugated with the ultrasonic treatment could remove successfully the TOC in groundwater around the underground LPG strorage cavern.

An Oxidative Chloride Stripping Solution for 14K Gold Alloys

  • Kim, Kwangbae;Kim, Ikgyu;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.30 no.8
    • /
    • pp.393-398
    • /
    • 2020
  • We propose a novel stripping solution containing acids (HCl and HNO3), an oxidant [(NH4)2S2O8], and complexing agents (NaCl and citric acid) to remove surface passivation layers from 14K gold alloys fabricated using an investment casting process. The optimized solution employing only HCl acid is determined by varying molar fractions of HCl and HNO3 on 14K yellow gold samples. Stripping properties are also identified for red and white gold alloy samples under the optimized stripping conditions. The removal of passivation layers, weight loss, and microstructure evolution are characterized using Raman spectroscopy, a precision scale, and optical microscopy. The proposed stripping solution effectively removes passivation layers more rapidly than conventional cyanide stripping. Weight loss increases linearly for up to 5 min for all 14K gold alloys. Red gold exhibits the greatest weight loss, followed by yellow gold and white gold. The results of microstructural analysis reveal that the conformal stripping occurs according to time. These results imply that the proposed oxidative chloride stripping might replace conventional cyanide stripping.

Effect of Pre-NH3 Stripping on the Advanced Sewerage Treatment by BNR (BNR에 의한 하수의 고도처리에 미치는 NH3 스트리핑 전처리의 영향)

  • Seo, Jeong-Beom;An, Kwang-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.846-850
    • /
    • 2006
  • The biological nutrient removal from domestic wastewater with low C/N ratio is difficult. Therefore, this study was performed to increase influent C/N ratio by ammonia stripping without required carbon source and for improving treatment efficiencies of sewerage by the combination process of ammonia stripping and BNR (StripBNR). The results of this study were summarized as follows. BOD removal efficiencies of BNR and StripBNR were 95.3% and 93.2%, respectively. T-N and T-P removal efficiencies of BNR were 53.3% and 40.8%, respectively. T-N and T-P removal efficiencies of StripBNR were 72.8% and 62.9%, respectively. Concentrations of $NH_3-N$, $NO_2-N$ and $NO_3-N$ at BNR effluent were 0.03 mg/L, 0.08 mg/L and 9.12 mg/L, respectively. On the other hands, concentrations of $NH_3-N$, $NO_2-N$ and $NO_3-N$ at StripBNR effluent were 5.79 mg/L, 0.01 mg/L and 0.14 mg/L, respectively. Consequently, influent C/N ratio of BNR process was increased by ammonia stripping. Removal efficiency of T-N and T-P was improved about 20% by the process of StripBNR.

A Study on the Mass Transfer and Metal Extraction by use of Hydrophobic Membrane (소수성막을 이용한 금속추출 및 물질전달에 관한 연구)

  • Lee, Ryong-Jin;Kim, Young-Il;Park, Dong-Won
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.1036-1042
    • /
    • 1998
  • It was investigated that the extraction of Cr(VI) from aqueous solution into the organic TDA and the stripping(back extraction) of Cr(VI) from the Cr(VI)-TDA complex into NaOH aqueous solution by hydrophobic hollow fiber membrane. It was found that the mass transfer rates of stripping process were smaller than those of the extraction process. This result was expected that membrane resistance, neglected in the extraction process, acts on the stripping process when organic phase flow in the tube side of the hydrophobic membrane. Hollow fiber modules were made by potting the desired number(60, 100, 150, 300fibers). We also examined the effect of flow rates of aqueous and organic phase on the mass transfer rate in the membrane modules. From these experiments, we identified for the extraction process by using hydrophobic membrane, the effect of flow rate of aqueous phase on the mass transfer rate was significant, but that of organic phase was negligible one. In the stripping process, however, mass transfer rate depend neither flow rate of aqueous(stripping solution) phase nor that of organic(Cr-TDA complex) phase.

  • PDF

Process Design for Recovery of Unreacted Styrene Monomer for Utility Saving (유틸리티 절감을 위한 미반응 스티렌 모노머 회수공정의 설계)

  • Bong, Jooyoung;Na, Sujin;Lee, Kwang soon
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.54-59
    • /
    • 2017
  • A study for process design to curtail the utility consumption during residual styrene monomer recovery in an ABS polymerization process was carried out. Among different techniques for residual monomer recovery, the steam stripping is dominantly employed in industries. The existing process, however, consumes a large amount of utility (steam and cooling water), and this study focused on the design of a new process that can substantially spare the utility consumption. A new process was configured to utilize the latent heat of the stripping steam, which is condensed with the monomer using cooling water after exiting the stripper. The condenser was modified to use vacuum state water as coolant and to generate vacuum state steam using the latent heat of the stripping steam. The steam is injected to the stripper as the stripping steam after upgrading using a compressor. Through this modification, consumption of steam and also cooling water could be significantly reduced at some expense of electricity for compressor operation.

Separation of Cd(II) from Aqueous Solutions by A New Consecutive Process Consisting of Supported Liquid Membrane and Electrodialysis

  • Altin, Sureyya;Altin, Ahmet
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.14-21
    • /
    • 2019
  • Supported liquid membrane process usually is used for recovering or enrichment of valuable metals in the industrial wastewater. But, even if the metals in the wastewater was separated with high chemical selectivity, it cannot be enough concentrated since separation performance of supported liquid membrane (SLM) process is limited by concentration gradient between feed solution and stripping solution. If metal concentration in the stripping solution to be enough low, transport of metal through membrane can be accomplishment constantly. Therefore, Electrodialysis (ED) has been placed after SLM process and the stripping solution of SLM was used as the feed solution for the ED process. Transport of ions in the solutions is successfully performed by ED process. Thus, the metal concentration in the stripping solution does not rise as to stop ion transport. Besides, valuable metals easily are concentrated by ED process for re-use. In this study, effects of operation parameters like initial Cd(II) concentration, HCl concentration in the feed solution of SLM and applied voltage are investigated on separation efficiency, flux and permeability of the both processes. As the feed solution concentration increased, all performance values has increased. When initial concentration of 100 mg/L is used, separation performances (SP) are 55% and 70%, for SLM and consecutive process, respectively. The best HCl concentration in the feed solution of SLM has determined as 2 M, in this conditions SP are 64% and 72%, for SLM and consecutive process, respectively. With increased of applied voltage on ED process, SP of the consecutive process has been raised from 72% to 83%. According to the obtained experimental data, consecutive process has better separation performance than SLM. When the separation performances of both processes were compared for the same operating conditions, it was determined higher the separation efficiency, permeability and flux values of the consecutive process, 8%, 9% and %10.6, respectively. Consequently, the use of the consecutive process increases the performance efficiency of both processes. The consecutive process studied has quite a good chemical separation efficiency, and enrichment capability. Moreover, this process requires few water and energy.

Estimation of Ammonia Stripping Condition for Adequate Aerobic Liquid-Composting of Swine Manure (돈분뇨의 적합한 호기성 액비화를 위한 암모니아 탈기조건 설정)

  • Son, Bo-Kyoon;Gang, Seong-Gu;Jo, Eun-Ju;Kim, Shin-Do;Lee, Chang-Ju;Kim, Jeong-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.2
    • /
    • pp.73-79
    • /
    • 2006
  • Aeration is the most important and indispensable operation unit for the treatment of swine manure using aerobic liquid-composting process. The composting of swine manure depends on biological treatment process, but the highly concentrated ammonia nitrogen is required a pretreatment to expect the appropriate efficiency of the biological treatment process. In this study, pilot experiments have been carried out to estimate of the fit condition about ammonia stripping process as a pretreatment to aerobic liquid- composting. pH adjustment with $Ca(OH)_2$ was economically superior to use of NaOH and optimum pH of ammonia stripping was 12.3, ammonia nitorgen was rapidly removed as pH were increased at $$35^{\circ}C$$. When air stripping is performed before aerobic liquid-stripping, a high initial pH is required for complete ammonia removal and is additional effects such as organic substances, phosphorus, turbidity, and color removal. Stripping process was very efficient in the pretreatment of highly concentrated ammonia nitrogen for composting of swine manure. Emission rate of gaseous ammonia was $0.5355mole\;s^{-1}$ at initial time and $0.0253mole\;s^{-1}$ at finitial time. The fit condition of ammonia stripping in this study were at the temperature of $$35^{\circ}C$$, and the pH of 12.3 during 48 hours.